[发明专利]一种基于深度神经网络的网络表示学习方法在审
申请号: | 201910426821.4 | 申请日: | 2019-05-21 |
公开(公告)号: | CN110414665A | 公开(公告)日: | 2019-11-05 |
发明(设计)人: | 熊丽荣;沈树茂;范菁;虞胜杰 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 王桂名 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于深度神经网络的网络表示学习方法,包括如下步骤:1)首先在网络中进行随机游走,得到节点序列;2)然后结合节点在节点序列中的位置信息,将节点序列中的各个节点转换成特征向量;3)基于深度双向转换编码器建立学习模型,将步骤2)经过处理的节点序列输入到学习模型中进行训练,得到网络中节点的表示向量。本发明结合节点在节点序列中的位置信息,更好地利用节点之间的关系信息。本发明将自然语言处理中的深度双向转换编码器用于网络表示学习,以更好地保留网络的局部结构和全局结构,进一步地提升了节点表示向量的准确度。 | ||
搜索关键词: | 节点序列 网络表示 神经网络 双向转换 编码器 向量 学习 自然语言处理 准确度 网络 关系信息 节点转换 局部结构 全局结构 随机游走 特征向量 保留 | ||
【主权项】:
1.一种基于深度神经网络的网络表示学习方法,其特征在于包括如下步骤:1)首先在网络中进行随机游走,得到节点序列;2)然后结合节点在节点序列中的位置信息,将节点序列中的各个节点转换成特征向量;3)基于深度双向转换编码器建立学习模型,将步骤2)经过处理的节点序列输入到学习模型中进行训练,得到网络中节点的表示向量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910426821.4/,转载请声明来源钻瓜专利网。