[发明专利]一种基于深度学习的焊接机器人的焊缝识别方法在审

专利信息
申请号: 201910429265.6 申请日: 2019-05-22
公开(公告)号: CN110135513A 公开(公告)日: 2019-08-16
发明(设计)人: 王涛;孙振;倪浩敏;萧堪鸿 申请(专利权)人: 广东工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 罗满
地址: 510060 广东省*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的焊接机器人的焊缝识别方法,包括:获取焊缝的样本图像集;建立卷积‑反卷积神经网络的模型;模型包括卷积神经网络和反卷积神经网络,通过卷积神经网络提取待识别焊缝的图像特征,通过反卷积神经网络获取待识别焊缝的语义表达式;卷积神经网络包括具有卷积核的卷积层,卷积核的采样点位置均设置偏移变量,以实现卷积核采样点根据待识别焊缝的特征自适应变化;利用样本图像集训练模型,得到卷积‑反卷积神经网络;将获取的待识别焊缝的图像输入卷积‑反卷积神经网络,得到待识别焊缝的分割图片和分割图片所对应的焊缝类型。上述焊缝识别方法,能够极大提高焊缝识别的精度和效率。
搜索关键词: 焊缝 神经网络 反卷积 焊缝识别 卷积 卷积神经网络 卷积核 焊接机器人 样本图像 采样点位置 自适应变化 焊缝类型 偏移变量 图像输入 图像特征 训练模型 语义 采样点 分割 学习 图片
【主权项】:
1.一种基于深度学习的焊接机器人的焊缝识别方法,其特征在于,包括:获取焊缝的样本图像集;建立卷积‑反卷积神经网络的模型;所述模型包括卷积神经网络和反卷积神经网络,通过所述卷积神经网络提取待识别焊缝的图像特征,通过所述反卷积神经网络获取待识别焊缝的语义表达式;所述卷积神经网络包括具有卷积核的卷积层,所述卷积核的采样点位置均设置偏移变量,以实现所述卷积核采样点根据待识别焊缝的特征自适应变化;利用所述样本图像集训练所述模型,得到所述卷积‑反卷积神经网络;将获取的待识别焊缝的图像输入所述卷积‑反卷积神经网络,得到待识别焊缝的分割图片和所述分割图片所对应的焊缝类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910429265.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top