[发明专利]基于多模态深度学习的病理分类方法及系统有效

专利信息
申请号: 201910452839.1 申请日: 2019-05-28
公开(公告)号: CN110298383B 公开(公告)日: 2021-07-13
发明(设计)人: 张法;颜锐;谭光明;任菲;刘志勇;刘玉东;张云峰 申请(专利权)人: 中国科学院计算技术研究所;北京腾茂盛达科技有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46;G06N3/04;G06N3/08;G16H50/20;G16H50/70
代理公司: 北京律诚同业知识产权代理有限公司 11006 代理人: 祁建国;梁挥
地址: 100080 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于多模态深度学习的病理分类方法及系统,包括:从电子病历中提取出预先选择的属性作为结构化数据的特征表示向量,将特征表示向量平均扩增后再按照预设比例随机丢弃,丢弃的部分被替换为数字0,作为电子病历中结构化数据的病历特征向量;获取与电子病历对应的组织病理学图像,将卷积神经网络的各卷积层的特征图进行全局平均池化后拼接成一维向量,作为组织病理学图像的一种丰富的图像特征向量;将图像特征向量和病历特征向量拼接在一起,得到多模态融合向量,然后将多模态融合向量输入至全连接层,得到二值化的病理分类结果。本发明解决了单模态的特征表示来进行病理良恶性分类的准确率不高的技术问题。
搜索关键词: 基于 多模态 深度 学习 病理 分类 方法 系统
【主权项】:
1.一种基于多模态深度学习的病理分类方法,其特征在于,包括:步骤1、从电子病历中提取出预先选择的属性作为结构化数据的特征表示向量,将该特征表示向量平均扩增后再按照预设比例随机丢弃,丢弃的部分被替换为数字0,作为电子病历中结构化数据的病历特征向量;步骤2、获取与该电子病历对应的组织病理学图像,将卷积神经网络的各卷积层的特征图进行全局平均池化后拼接成一维向量,作为该组织病理学图像的一种丰富的图像特征向量;步骤3、将该图像特征向量和该病历特征向量拼接在一起,得到多模态融合向量,然后将该多模态融合向量输入至全连接层,得到二值化的病理分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所;北京腾茂盛达科技有限公司,未经中国科学院计算技术研究所;北京腾茂盛达科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910452839.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top