[发明专利]一种基于内容的跨领域推荐方法在审
申请号: | 201910454275.5 | 申请日: | 2019-05-29 |
公开(公告)号: | CN110232153A | 公开(公告)日: | 2019-09-13 |
发明(设计)人: | 佘焕波;田翔 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06F16/9535 | 分类号: | G06F16/9535;G06Q30/06;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 梁莹;顾思妍 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于内容的跨领域推荐方法,包括以下步骤:步骤S1:得到用户兴趣词表;步骤S2:采用源领域的用户行为序列中项目的文本信息作为源领域训练数据,采用目标领域中每个项目的文本信息作为目标领域训练数据;步骤S3:构建内容语义编码网络模型;步骤S4:利用步骤S3训练好的内容语义编码网络模型对源领域的用户行为和目标领域的项目进行内容语义编码,得到用户行为兴趣向量和项目语义向量;步骤S5:对每个用户,利用其兴趣向量与项目语义向量计算相似度,并得到k个最相似的项目作为推荐项目。本发明能够基于源领域用户行为序列中的项目的文本信息编码出用户兴趣向量,并与目标领域的项目进行匹配,进而实现跨领域的推荐。 | ||
搜索关键词: | 目标领域 用户行为 源领域 内容语义 文本信息 编码网络 兴趣向量 训练数据 用户兴趣 语义向量 词表 计算相似度 构建 向量 匹配 | ||
【主权项】:
1.一种基于内容的跨领域推荐方法,其特征在于:包括以下步骤:步骤S1:分别采集源领域的文本语料和目标领域的文本语料,并进行分词统计,得到用户兴趣词表;步骤S2:采用源领域的用户行为序列中项目的文本信息作为源领域训练数据,采用目标领域中每个项目的文本信息作为目标领域训练数据;步骤S3:构建内容语义编码网络模型,利用步骤S2构建的源领域训练数据和目标领域训练数据对内容语义编码网络模型进行分类训练;步骤S4:利用步骤S3训练好的内容语义编码网络模型对源领域的用户行为和目标领域的项目进行内容语义编码,得到用户行为兴趣向量和项目语义向量;步骤S5:对每个用户,利用其兴趣向量与项目语义向量计算相似度,并得到k个最相似的项目作为推荐项目。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910454275.5/,转载请声明来源钻瓜专利网。