[发明专利]一种基于信息增益的CNN和LSTM图像高层语义理解方法在审

专利信息
申请号: 201910459249.1 申请日: 2019-05-29
公开(公告)号: CN110188819A 公开(公告)日: 2019-08-30
发明(设计)人: 郝玉洁;林劼;崔建鹏;杜亚伟;党元 申请(专利权)人: 电子科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 成都金英专利代理事务所(普通合伙) 51218 代理人: 袁英
地址: 610041 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于信息增益的CNN和LSTM图像高层语义理解方法,包括构建改进的卷积神经网络、构建卷积神经网络和长短期记忆网络联合神经网络、数据预处理和图像语义解读;构建改进卷积神经网络,是利用大规模图像语义数据集构建并改进卷积神经网络;构建联合神经网络,是利用改进的卷积神经网络和长短期记忆网络构建联合神经网络;数据预处理,是将图像进行数据增强的操作,同时将场景的文本标签实现嵌入操作完成数据预处理;图像语义解读,是将图像特征输入训练完成的模型中进行图像语义解读。本发明改进了传统的图像与文本信息的图像语义理解模型,提出了一种新的卷积神经网络和长短期记忆网络的结合方法,能够显著的提升图像语义解读的效果。
搜索关键词: 卷积神经网络 图像语义 构建 解读 数据预处理 记忆网络 神经网络 图像 改进 高层语义 信息增益 操作完成 数据增强 图像特征 文本标签 文本信息 传统的 数据集 联合 嵌入 场景
【主权项】:
1.一种基于信息增益的CNN和LSTM图像高层语义理解方法,其特征在于包括:构建改进的卷积神经网络、构建卷积神经网络和长短期记忆网络联合神经网络、数据预处理和图像语义解读;所述构建改进卷积神经网络,是利用大规模图像语义数据集构建并改进卷积神经网络;所述构建卷积神经网络和长短期记忆网络联合神经网络,是利用改进的卷积神经网络和长短期记忆网络构建联合神经网络;所述数据预处理,是将图像进行数据增强的操作,同时将场景的文本标签实现嵌入操作完成数据预处理;所述图像语义解读,是将图像特征输入训练完成的模型中进行图像语义解读。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910459249.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top