[发明专利]基于分组回归模型的人体三维关节点预测方法有效
申请号: | 201910470515.0 | 申请日: | 2019-05-31 |
公开(公告)号: | CN110188700B | 公开(公告)日: | 2022-11-29 |
发明(设计)人: | 王华彬;何学胜;贺莹;秦愿;徐晗;张首平;李宁森;陶亮 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06V40/20 | 分类号: | G06V40/20;G06V10/80;G06V10/766;G06V10/82 |
代理公司: | 南京华恒专利代理事务所(普通合伙) 32335 | 代理人: | 宋方园 |
地址: | 230000 安徽*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于分组回归模型的人体三维关节点预测方法,包括以下步骤:采集人体2d关节点检测数据;将2d关节点坐标输入到相同结构的回归网络中并得到不同组的3d关节位置并将所得的关键三维位置合并为整体关节向量;通过BiLSTM构建关节点自约束网络和关节组自约束网络,然后将两个自约束网络输出的3d关节点进行累加得到微调后的3d预测关节;通过损失函数计算3d预测关节与3d关节之间的欧氏距离。本发明结合人体四肢关节运动独立性的特点采用分组回归的结构,将四肢和躯干划分入不同关节组中,分别预测各组内关节点的3d位置,同时为使预测结果更贴近真实人体姿态,利用BiLSTM设计人体关节自约束网络用于调整预测结果,提升准确度。 | ||
搜索关键词: | 基于 分组 回归 模型 人体 三维 关节点 预测 方法 | ||
【主权项】:
1.一种基于分组回归模型的人体三维关节点预测方法,其特征在于:包括以下步骤:(1)数据处理,即通过2d关节探测器采集人体的2d关节点检测数据;(2)分组回归网络,即以2d关节点的坐标作为输入,输入到相同结构的回归网络中并得到不同组的3d关节位置,然后将所得的关键三维位置合并为整体关节向量;(3)关节约束网络,通过BiLSTM构建关节点自约束网络和关节组自约束网络,关节点自约束网络以单关节点作为输入,关节组自约束网络以单组关节作为输入,然后将两个自约束网络输出的3d关节点进行累加得到微调后的3d预测关节;(4)网络训练,即通过损失函数计算步骤(3)所得3d预测关节与3d关节之间的欧氏距离,网络训练时,通过梯度下降的方式最小化该损失函数直到收敛。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910470515.0/,转载请声明来源钻瓜专利网。