[发明专利]一种任务驱动的码流结构化图像编码方法有效

专利信息
申请号: 201910474710.0 申请日: 2019-06-03
公开(公告)号: CN110225341B 公开(公告)日: 2020-08-28
发明(设计)人: 陈志波;何天宇;孙思萌 申请(专利权)人: 中国科学技术大学
主分类号: H04N19/124 分类号: H04N19/124;H04N19/147;H04N19/42;H04N19/44;H04N19/50;H04N19/70;H04N19/91;G06N3/04
代理公司: 北京科迪生专利代理有限责任公司 11251 代理人: 安丽;邓治平
地址: 230026 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种任务驱动的码流结构化图像编码方法,包括:码流结构化编码器和解码器,码流结构化编码器实现输入图像的结构化表示和压缩,解码器根据压缩得到的特征对输入图像进行重构;所述码流结构化编码器包括:特征提取、目标检测、量化、预测编码过程和基于对象的码流划分过程;本发明对图像进行编码,编码过程中在特征层面检测对象,并基于检测结果进行结构化码流的生成,以实现根据不同的智能分析任务针对性选择部分结构化码流或者全部码流进行解析的目的,使得图像编码传输应用这一过程更为高效和灵活。
搜索关键词: 一种 任务 驱动 结构 图像 编码 方法
【主权项】:
1.一种任务驱动的码流结构化图像编码方法,其特征在于,包括:码流结构化编码器和解码器,码流结构化编码器实现输入图像的结构化表示和压缩,解码器根据压缩得到的特征对输入图像进行重构;所述码流结构化编码器包括:特征提取、目标检测、量化、预测编码过程和基于对象的码流划分过程;特征提取过程,对输入图像进行多尺度特征提取和融合,其输出的特征同时作为量化和目标检测的输入;目标检测过程,包含一个区域决策模块和对齐模块,对所述特征进行基于对象的检测,输出检测结果辅助结构化编码的实现,实现过程为:输入的所述特征通过区域决策模块得到所有对象可能存在区域的边界框(bounding boxes),所有可能结果经过对齐模块处理后,进行分类任务,并对每个边界框(bounding boxes)计算损失函数,随后通过阈值处理,判决得到得分最高的结果作为最终输出结果,输出结果包括边界框和类别标签;量化过程,对输入的所述特征做数字化的处理;预测编码过程,预测编码模块根据压缩结果即特征提取的输出,预测后续的特征值,根据重建图像内容自适应地调整局部区域码率,生成重要性映射图,从而更好地控制率失真的平衡,得到更好的压缩性能;基于对象的码流划分过程:将量化后的特征在空间维度上进行基于对象的划分,划分依据为目标检测的输出结果,即边界框和类别标签,划分过程为:在量化后的特征上,根据边界框切割出对象对应的区域,类别标签指明对象的类别信息;经过划分的不同部分特征将依次通过熵编码处理形成结构化的码流,同时,边界框和类别标签将会被编码到头信息中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910474710.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top