[发明专利]一种基于字典学习和低秩矩阵分解的说话人识别方法有效

专利信息
申请号: 201910475010.3 申请日: 2019-06-03
公开(公告)号: CN110265039B 公开(公告)日: 2021-07-02
发明(设计)人: 王昕;李宗晏 申请(专利权)人: 南京邮电大学
主分类号: G10L17/04 分类号: G10L17/04;G10L17/02;G10L17/12
代理公司: 南京苏科专利代理有限责任公司 32102 代理人: 陈栋智
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于字典学习和低秩矩阵分解的说话人识别方法,包括以下步骤:步骤1,对说话人音频进行预加重、分帧、加窗、端点检测等处理;步骤2,提取出对应每个说话人语句的MFCC特征,并训练GMM‑UBM模型;步骤3,通过联合因子分析(JFA)估算全局差异空间矩阵T,全局差异空间因子w;步骤4,得到对应每个说话人语句的i‑vector;步骤5,从训练集中提取M维度的i‑vector并生成特征矩阵,根据训练集和测试集,对判别字典进行生成,得到的字典将作为i‑vector后端处理和打分模块,为最终判别提供依据;适应字典学习准则的编码系数可以有效提升识别力,并通过结构化稀疏来进行最优分类。
搜索关键词: 一种 基于 字典 学习 矩阵 分解 说话 识别 方法
【主权项】:
1.一种基于字典学习和低秩矩阵分解的说话人识别方法,其特征在于:包括以下步骤:步骤1,对说话人音频进行预加重、分帧、加窗、端点检测等处理;步骤2,提取出对应每个说话人语句的MFCC特征,并训练GMM‑UBM模型;步骤3,通过联合因子分析(JFA)估算全局差异空间矩阵T,全局差异空间因子w;步骤4,得到对应每个说话人语句的i‑vector;步骤5,从训练集中提取M维度的i‑vector并生成特征矩阵,根据训练集和测试集,对判别字典进行生成,得到的字典将作为i‑vector后端处理和打分模块,为最终判别提供依据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910475010.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top