[发明专利]一种基于winograd算法的快速图像处理方法有效
申请号: | 201910480120.9 | 申请日: | 2019-06-04 |
公开(公告)号: | CN110222760B | 公开(公告)日: | 2023-05-23 |
发明(设计)人: | 闫浩;庞亮;姚梦云;门亚清;李华超;柴一凡;时龙兴 | 申请(专利权)人: | 东南大学;东南大学—无锡集成电路技术研究所 |
主分类号: | G06V10/774 | 分类号: | G06V10/774;G06V10/82;G06N3/0464;G06N3/048;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 葛潇敏 |
地址: | 214135 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于winograd算法的快速图像处理方法,包括如下步骤:步骤1,选取数据集,利用Caffe框架训练自定义的神经网络模型,提取训练后的模型的卷积核权重、偏置值;步骤2,提取输入图片像素点,并存放在四维数组中,四个维度分别是输入图片数目、通道数、图片的长和宽;步骤3,构造基于winograd算法的卷积算子,判断卷积核尺寸是否为3×3且通道数是否大于10,如果满足,则使用winograd算子进行卷积操作;步骤4,输出卷积操作后得到的结果,并判断本层是否为最后一层卷积层,如果是,将输出图片经过RELU层的非线性变换后送入全连接层,否则重复步骤3。此种图像处理方法可提高处理器运行神经网络时的计算能效。 | ||
搜索关键词: | 一种 基于 winograd 算法 快速 图像 处理 方法 | ||
【主权项】:
1.一种基于winograd算法的快速图像处理方法,其特征在于包括如下步骤:步骤1,选取数据集,利用Caffe框架训练自定义的神经网络模型,提取训练后的模型的卷积核权重、偏置值;步骤2,提取输入图片像素点,并存放在四维数组中,四个维度分别是输入图片数目、通道数、图片的长和宽;步骤3,构造基于winograd算法的卷积算子,判断卷积核尺寸是否为3×3且通道数是否大于通道阈值,如果满足,则使用winograd算子进行卷积操作;步骤4,输出卷积操作后得到的结果,并判断本层是否为最后一层卷积层,如果是,将输出图像经过激活函数层的非线性变换后送入全连接层,否则重复步骤3。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学;东南大学—无锡集成电路技术研究所,未经东南大学;东南大学—无锡集成电路技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910480120.9/,转载请声明来源钻瓜专利网。