[发明专利]一种基于卷积神经网络的人体姿态识别方法有效

专利信息
申请号: 201910481323.X 申请日: 2019-06-04
公开(公告)号: CN110222634B 公开(公告)日: 2022-11-01
发明(设计)人: 李建;张袁;罗颖;张亦昕 申请(专利权)人: 河海大学常州校区
主分类号: G06V40/20 分类号: G06V40/20;G06V10/774;G06V10/82;G06N3/04
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 董建林;杨静
地址: 213022 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于卷积神经网络的人体姿态识别方法,首先获取人体姿态数据集,并对其进行视频切成图像帧的预处理;然后搭建卷积神经网络模型,通过在RELU激励函数输入处引入稀疏性,减少激励函数的不必要输入;接着结合稀疏项优化传统目标损失函数,通过迭代更新参数,对网络进行训练,从而获得最优解;最后,根据训练所得的网络模型,对人体姿态进行识别,输出人体姿态类别。本发明的有益效果是:本发明采用的方法在保持较高姿态识别率的同时,可以加快收敛速度,提高网络的泛化能力。
搜索关键词: 一种 基于 卷积 神经网络 人体 姿态 识别 方法
【主权项】:
1.一种基于卷积神经网络的人体姿态识别方法,其特征在于,包括以下步骤:S01,获取人体姿态视频数据集,对其进行视频切成图像帧的预处理,并将被切成图像帧的图像数据集划分成训练集与验证集;S02,构建神经网络模型,在RELU激励函数输入处引入稀疏性,卷积神经网络的输入为所述步骤S01中预处理后的图像,输出为人体姿态类别;对所述卷积神经网络进行训练;S03,采用所述S02中的神经网络模型对人体姿态进行识别,在公开的人体姿态数据集KTH上进行模型训练和性能的测试;当有未知视频输入时,首先调用所述步骤S01进行预处理,然后利用所述步骤S02中的神经网络模型进行姿态识别,获取人体姿态类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学常州校区,未经河海大学常州校区许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910481323.X/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top