[发明专利]一种样本自动标注的钢轨扣件异常检测方法有效
申请号: | 201910488359.0 | 申请日: | 2019-06-05 |
公开(公告)号: | CN110378869B | 公开(公告)日: | 2021-05-11 |
发明(设计)人: | 刘俊博;黄雅平;王胜春;戴鹏;杜馨瑜 | 申请(专利权)人: | 北京交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 北京卫平智业专利代理事务所(普通合伙) 11392 | 代理人: | 张新利;谢建玲 |
地址: | 100044*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种样本自动标注的钢轨扣件异常检测方法。本发明能够在扣件区域定位阶段自动的收集扣件样本构建训练数据集,无需手工采集和标注训练样本。提出了一种融合基于离线学习获得的知识库和在线学习分类器的多分类识别模型,解决了扣件分类时对新线路数据的适应能力。本发明利用在线学习的思想动态的更新模板库,使扣件区域定位模块可以自适应不同铁路线路或不同区段的轨道图像。本发明还设计了一个深度卷积神经网络模型,使用多层次的卷积层来提取图像特征,对图像特征的表达能力更强,可有效提升图像分类的精度。针对不同类别扣件样本数量不平衡的问题,本发明提出了随机排序的策略减小样本数量失衡对网络性能的影响。 | ||
搜索关键词: | 一种 样本 自动 标注 钢轨 扣件 异常 检测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京交通大学,未经北京交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910488359.0/,转载请声明来源钻瓜专利网。