[发明专利]基于卷积神经网络对肺结节的恶性程度进行分类的方法有效
申请号: | 201910490546.2 | 申请日: | 2019-06-06 |
公开(公告)号: | CN110309860B | 公开(公告)日: | 2022-11-08 |
发明(设计)人: | 黄青松;段彦隆;赵晓乐;刘利军;冯旭鹏;傅铁威 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/80;G06V10/774;G06V10/82;G06N3/04;G06N3/08;G06T7/00;G16H50/20 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 650093 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于卷积神经网络对肺结节的恶性程度进行分类的方法,属于计算机图像处理技术领域。本发明针对不同肺结节预处理出不同尺寸的ROI图像块,在不引入过多的噪音干扰的前提下,对肺结节的多个层面进行基于残差网络的特征提取,通过两个阶段的特征融合获得更精确的特征信息,以此策略来提取出更高质量的特征表达。通过卷积神经网络提取肺结节的细粒度特征表达,综合考虑提取到的多个层面的特征信息,实现对肺结节特征信息的准确提取,最终对肺结节恶性程度进行分类。 | ||
搜索关键词: | 基于 卷积 神经网络 结节 恶性 程度 进行 分类 方法 | ||
【主权项】:
1.基于卷积神经网络对肺结节的恶性程度进行分类的方法,其特征在于:所述方法的具体步骤如下:Step 1、对图像预处理,根据切片上肺结节的长径不同,切割出尺寸为R={16*16,32*32,64*64,128*128}的感兴趣区域Region Of Interest,ROI图像块;Step 2、在子模块M1中采用残差网络ResNet50的网络模型,通过该模块对多层面的肺结节进行初步特征提取,可同时得到同一个肺结节不同切片的特征表达;Step 3、利用M1子模块中提取的4层特征信息分别与不同尺度的特征进行融合,然后将最终得到的三个图片特征信息进行二次融合,得到一个特征向量F;Step 4、将向量F经过全局平均池化层和全连接层的展开,最终通过Softmax函数得到肺结节恶性程度的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910490546.2/,转载请声明来源钻瓜专利网。