[发明专利]一种高压设备的故障类型识别方法及其系统有效
申请号: | 201910496881.3 | 申请日: | 2019-06-10 |
公开(公告)号: | CN110161388B | 公开(公告)日: | 2021-04-06 |
发明(设计)人: | 宋辉;万晓琪;李喆;王辉;罗林根;钱勇;张钊棋;盛戈皞 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G01R31/12 | 分类号: | G01R31/12;G06K9/62 |
代理公司: | 上海东信专利商标事务所(普通合伙) 31228 | 代理人: | 杨丹莉;李丹 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种高压设备的故障类型识别方法,其包括步骤:(1)获取高压设备局部放电的特高频信号数据和超声波信号数据;(2)分别提取基于特高频信号数据的PRPS图谱特征和基于超声波信号数据的梅尔频谱特征;(3)构建支持向量机神经网络和卷积神经网络,将PRPS图谱特征输入支持向量机神经网络以使其输出PRPS图谱特征所表征的第一故障诊断概率矩阵;将梅尔频谱特征输入卷积神经网络以使其输出梅尔频谱特征所表征的第二故障诊断概率矩阵;(4)基于Choquet模糊积分对第一故障诊断概率矩阵和第二故障诊断概率矩阵进行融合,得到最终诊断的故障类型。此外,本发明还公开了一种高压设备的故障类型识别系统。 | ||
搜索关键词: | 一种 高压 设备 故障 类型 识别 方法 及其 系统 | ||
【主权项】:
1.一种高压设备的故障类型识别方法,其特征在于,包括步骤:(1)获取高压设备局部放电的特高频信号数据和超声波信号数据;(2)分别提取基于特高频信号数据的PRPS图谱特征和基于超声波信号数据的梅尔频谱特征;(3)构建支持向量机神经网络和卷积神经网络,将PRPS图谱特征输入支持向量机神经网络以使其输出PRPS图谱特征所表征的第一故障诊断概率矩阵;将梅尔频谱特征输入卷积神经网络以使其输出梅尔频谱特征所表征的第二故障诊断概率矩阵;(4)基于Choquet模糊积分对第一故障诊断概率矩阵和第二故障诊断概率矩阵进行融合,得到最终诊断的故障类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910496881.3/,转载请声明来源钻瓜专利网。