[发明专利]投诉文本的分类方法、系统和存储介质在审
申请号: | 201910513241.9 | 申请日: | 2019-06-14 |
公开(公告)号: | CN110427959A | 公开(公告)日: | 2019-11-08 |
发明(设计)人: | 余本功;曹雨蒙;杨颖;陈杨楠;张强;杨善林;朱梦迪;王胡燕;汲浩敏 | 申请(专利权)人: | 合肥工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06F17/27;G06Q30/02 |
代理公司: | 北京久诚知识产权代理事务所(特殊普通合伙) 11542 | 代理人: | 余罡 |
地址: | 230009 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种投诉文本的分类方法、系统和存储介质,涉及文本分类领域。包括以下步骤:获取投诉文本,对投诉文本预处理;基于预训练的Doc2vec模型对投诉文本进行处理,获取文本特征向量;基于预训练的隐含狄利克雷分布模型对投诉文本进行处理,获取主题特征向量;基于文本特征向量和主题特征向量获取文本向量;基于预训练的支持向量机模型对文本向量处理,得到第一分类结果;基于预训练的随机森林模型对文本向量处理,得到第二分类结果;基于bagging方法对第一分类结果和第二分类结果进行处理,得到投诉文本的分类结果。本发明可以将投诉文本准确分类。 | ||
搜索关键词: | 分类结果 文本 投诉 文本向量 文本特征向量 存储介质 主题特征 分类 支持向量机模型 文本预处理 分布模型 随机森林 文本分类 向量获取 向量 隐含 | ||
【主权项】:
1.一种投诉文本的分类方法,其特征在于,所述分类方法由计算机执行,包括以下步骤:获取投诉文本,对所述投诉文本预处理;基于预训练的Doc2vec模型对预处理后的投诉文本进行处理,获取文本特征向量;基于预训练的隐含狄利克雷分布模型对预处理后的投诉文本进行处理,获取主题特征向量;基于所述文本特征向量和所述主题特征向量获取文本向量;基于预训练的支持向量机模型对所述文本向量处理,得到第一分类结果;基于预训练的随机森林模型对所述文本向量处理,得到第二分类结果;基于bagging方法对所述第一分类结果和所述第二分类结果进行处理,得到所述投诉文本的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910513241.9/,转载请声明来源钻瓜专利网。