[发明专利]利用变分的正则化流实现的项目推荐方法及模型训练方法有效
申请号: | 201910515356.1 | 申请日: | 2019-06-14 |
公开(公告)号: | CN110232480B | 公开(公告)日: | 2021-05-11 |
发明(设计)人: | 钟婷;温子敬;周帆 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06N3/04;G06K9/62 |
代理公司: | 成都虹盛汇泉专利代理有限公司 51268 | 代理人: | 王伟 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种利用变分的正则化流实现的项目推荐模型训练方法及项目推荐方法,采用带注意力机制的循环神经网络并加入正则化流的变分推断,通过学习会话序列的隐含变量,为用户推荐下一次点击的项目,只通过用户点击过的项目序列数据就可以稳定有效地近似推断整个会话序列的下一次点击项目,而且预测模型加入注意力机制来增强会话中重要的项目点的权重,大大提高了预测的精确度。此外,本发明在模型中加入了变分的正则化流去学习隐含变量的真实分布,这可以减小传统的变分模型(比如VAE)在基于会话的推荐问题中的误差。 | ||
搜索关键词: | 利用 正则 实现 项目 推荐 方法 模型 训练 | ||
【主权项】:
1.一种利用变分的正则化流实现的项目推荐模型训练方法,其特征在于包括以下步骤:S1,构建训练集:利用同一用户的基于会话的序列构建训练集;S2,数据的预处理:将基于会话的序列划分为输入数据和标签项目,并将输入数据中的每一个项目进行嵌入,表示成嵌入向量;S3,获取隐含变量,将表示成嵌入向量的输入数据输入循环神经网络,并引入正则化流学习算法和注意力机制,分别构建第一隐含变量和第二隐含变量,并将两个隐含变量拼接在一起获取最终的隐含变量;S4,获取第一损失,将最终的隐含变量输入到分类器中,输出得到预测项目,利用预测项目和该会话序列的标签项目计算交叉熵损失,并将其作为第一损失;S5,获取第二损失,将基于正则化流构建的第一隐含变量输入到解码器中得到第二损失;S6,将第一损失与第二损失相加生成最后的总损失;S7,重复步骤S2‑S6,最小化总损失,即得到所述项目推荐模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910515356.1/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理