[发明专利]用于目标检测的神经网络训练方法、装置、设备、介质有效
申请号: | 201910523611.7 | 申请日: | 2019-06-17 |
公开(公告)号: | CN110263842B | 公开(公告)日: | 2022-04-05 |
发明(设计)人: | 宋波 | 申请(专利权)人: | 北京影谱科技股份有限公司 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 北京知呱呱知识产权代理有限公司 11577 | 代理人: | 杜立军;孙志一 |
地址: | 100027 北京市东*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供用于目标检测的神经网络训练方法、装置、设备、介质,该方法包括:S1:将检测目标图像输入teacher网络、student网络;S2:将所述teacher网络中第四层的第一特征值、所述student网络中的第四层的第二特征值,进行比较,得到比对结果;S3:利用所述比对结果,对所述student网络进行调整,并进入步骤S2,直到得到的比对结果小于预设阈值,以得到训练后的student网络;其中,所述teacher网络与所述student网络的总体构架相同;所述teacher网络处于前向预测模式,所述student网络处于训练模式;所述teacher网络的通道数比所述student网络的通道数多;所述检测目标图像,设有检测目标的矩形框以及所述检测目标的标签类别。本发明针对检测目标图像,占用计算资源小。 | ||
搜索关键词: | 用于 目标 检测 神经网络 训练 方法 装置 设备 介质 | ||
【主权项】:
1.一种用于目标检测的神经网络训练方法,其特征在于,包括:S1:将检测目标图像输入teacher网络、student网络;S2:将所述teacher网络中第四层的第一特征值、所述student网络中的第四层的第二特征值,进行比较,得到比对结果;S3:利用所述比对结果,对所述student网络进行调整,并进入步骤S2,直到得到的比对结果小于预设阈值,以得到训练后的student网络;其中,所述teacher网络与所述student网络的总体构架相同;所述teacher网络处于前向预测模式,所述student网络处于训练模式;所述teacher网络的通道数比所述student网络的通道数多;所述检测目标图像,设有检测目标的矩形框以及所述检测目标的标签类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京影谱科技股份有限公司,未经北京影谱科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910523611.7/,转载请声明来源钻瓜专利网。