[发明专利]基于深度卷积神经网络的火炬烟雾图像的超分辨率方法在审

专利信息
申请号: 201910528997.0 申请日: 2019-06-19
公开(公告)号: CN112116526A 公开(公告)日: 2020-12-22
发明(设计)人: 张杰东;孙晓英;鲍磊;于安峰;党文义;顾锞 申请(专利权)人: 中国石油化工股份有限公司;中国石油化工股份有限公司青岛安全工程研究院
主分类号: G06T3/40 分类号: G06T3/40
代理公司: 青岛智地领创专利代理有限公司 37252 代理人: 林琪超
地址: 100728 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于深度卷积神经网络的火炬烟雾图像的超分辨率方法,该方法基于深度卷积神经网络的端到端的有监督学习。放空火炬是石油化工等产业中必不可少的安全保障设施。在典型的放空火炬系统中,燃烧不充分时产生的烟雾不仅会严重污染空气,而且会造成严重事故。针对放空火炬系统的烟雾图像分辨率低的问题,本发明设计了一个深度学习网络结构,并通过对烟雾图像进行端到端的学习低分辨率到高分辨率映射方式实现了烟雾图像的超分辨率恢复。通过实验对比,本方法针对烟雾区域的超分辨结果更优。本发明填补了针对放空火炬图像的烟雾区域图像的超分辨算法这一工程领域的空白,促进了放空火炬系统的安全环保燃烧。
搜索关键词: 基于 深度 卷积 神经网络 火炬 烟雾 图像 分辨率 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油化工股份有限公司;中国石油化工股份有限公司青岛安全工程研究院,未经中国石油化工股份有限公司;中国石油化工股份有限公司青岛安全工程研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910528997.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top