[发明专利]一种基于Keras框架和深度神经网络的图片分类方法有效

专利信息
申请号: 201910529685.1 申请日: 2019-06-19
公开(公告)号: CN110378383B 公开(公告)日: 2023-06-16
发明(设计)人: 韩飞;方升;凌万云;凌青华;吴伟康 申请(专利权)人: 江苏大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/82;G06N3/0464;G06N3/047;G06N3/048;G06N3/08;G06F16/55
代理公司: 暂无信息 代理人: 暂无信息
地址: 212013 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于Keras框架和深度神经网络的图片分类方法,包括对图片数据的预处理;通过构建卷积神经网络和全连接神经网络来训练模型,对手写数字图片数据进行识别。本发明充分利用Keras框架的高度模块化,极简和快速实验的优点,运用卷积神经网络的结构,解决以往研究人员事先确定参数以及每层维度的问题,进一步提高做实验的效率,从而减少研究人员实验时间并且提高手写数字识别准确性。
搜索关键词: 一种 基于 keras 框架 深度 神经网络 图片 分类 方法
【主权项】:
1.一种基于Keras框架和深度神经网络的图片分类方法,其特征在于,包括步骤:手写数字图像数据集的预处理,首先将手写数字图像数据集划分为训练集、测试集,然后对其进行维度修改,并对标签数据进行one‑hot编码。通过Keras框架构建三层卷积神经网络,设置每层卷积神经网络的卷积核个数、卷积核大小、激活函数和池化层;进一步通过Keras框架构建三层全连接层和输出层,设置每层全连接层和输出层的神经元个数;最后调用Keras框架的API构建损失函数,并在训练集上进行训练,得到的模型在测试集上进行测试,得出准确率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910529685.1/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top