[发明专利]一种雾霾天气车载视频动态目标检测和识别的方法有效
申请号: | 201910530766.3 | 申请日: | 2019-06-19 |
公开(公告)号: | CN110263706B | 公开(公告)日: | 2021-07-27 |
发明(设计)人: | 李寅;张梦园;孙胤;邵文泽 | 申请(专利权)人: | 南京邮电大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06T5/00;G06T7/10 |
代理公司: | 南京苏高专利商标事务所(普通合伙) 32204 | 代理人: | 康燕文 |
地址: | 210023 江苏*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种雾霾天气车载视频动态目标检测和识别的方法,主要针对的是图像识别中的特定情况,雾霾天气下的车辆识别;搭建基于AOD‑Net的深度神经网络,设计神经网络损失函数;采集数据训练神经网络模型;使用训练好的模型对有雾图像进行端到端的去雾清晰化处理;另外,在清晰图像中的车辆检测时我们使用基于MultiNet多层卷积神经网络进行端到端的训练,使用可方便调整大小的候选区域方法,在神经网络中加入rezoom层。采用本发明达到对雾天图像直接检测处理的效果,能够在有雾图像下较为精准地分割识别道路与车辆,大大缩短计算时间,满足实际应用中对实时性的要求。 | ||
搜索关键词: | 一种 天气 车载 视频 动态 目标 检测 识别 方法 | ||
【主权项】:
1.一种雾霾天气车载视频动态目标检测和识别的方法,其特征在于,包括以下步骤:(1)对预先获取的雾霾天气交通场景图片依据卷积神经网络建立的图像去雾模型AOD_Net进行去雾操作;(2)建立一个深度级联多任务框架,包括车辆检测、分类以及语义分割相关功能模块,基于神经网络对清晰交通场景图进行训练,以步骤(1)的输出作为检测模块的输入,完成对清晰交通场景图的车辆检测,并用边界框将其标注出来。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910530766.3/,转载请声明来源钻瓜专利网。