[发明专利]图像识别方法、装置、计算机设备以及存储介质有效
申请号: | 201910531711.4 | 申请日: | 2019-06-19 |
公开(公告)号: | CN110263707B | 公开(公告)日: | 2021-09-10 |
发明(设计)人: | 陈鸿;李克勤;阳王东;刘楚波;李肯立;吴帆;周旭;谭光华 | 申请(专利权)人: | 湖南大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04 |
代理公司: | 广州华进联合专利商标代理有限公司 44224 | 代理人: | 黄贞君 |
地址: | 410001 湖*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本申请具体涉及一种图像识别方法、装置、计算机设备和存储介质。方法包括:通过获取待识别图像,并将待识别图像输入训练完成的深度卷积神经网络;其中深度卷积神经网络通过在卷积层进行数据并行,而在全连阶层进行模型并行的训练方案训练获得。本申请图像识别方法通过在深度卷积神经网络的训练过程中,通过在卷积层采取数据并行,在全连接层进行模型并行的训练方法,通过多重并行训练缩短有效地缩短了深度卷积神经网络的训练周期,进而整体提高了图像识别过程的处理效率。 | ||
搜索关键词: | 图像 识别 方法 装置 计算机 设备 以及 存储 介质 | ||
【主权项】:
1.一种图像识别方法,所述方法包括:获取待识别图像,将所述待识别图像输入已训练的深度卷积神经网络;获取所述待识别图像对应的图像识别结果;所述已训练的深度卷积神经网络的训练过程包括:获取训练数据以及初始深度卷积神经网络,所述初始深度卷积神经网络包括卷积层以及全连接层;将所述训练数据分批并行输入所述初始深度卷积神经网络对应的多个训练器;对所述初始深度卷积神经网络的卷积层进行数据并行的前向传播训练,对所述深度卷积神经网络的全连接层进行模型并行的前向传播训练以及反向传播训练,对所述深度卷积神经网络的卷积层进行数据并行的反向传播训练;根据所述对所述深度卷积神经网络的卷积层进行数据并行的反向传播训练的训练结果,更新所述初始深度卷积神经网络的权重,获取已训练的深度卷积神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南大学,未经湖南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910531711.4/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序