[发明专利]多模态图像的自适应特征融合方法有效
申请号: | 201910539848.4 | 申请日: | 2019-06-21 |
公开(公告)号: | CN110222794B | 公开(公告)日: | 2023-02-07 |
发明(设计)人: | 余春艳;杨素琼 | 申请(专利权)人: | 福州大学 |
主分类号: | G06V10/80 | 分类号: | G06V10/80;G06V10/764;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 陈明鑫;蔡学俊 |
地址: | 350108 福建省福州市闽*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种多模态图像的自适应特征融合方法,主要解决针对深度网络提取的高层特征的融合存在的冗余性问题。本发明的具体步骤如下:首先,构建编码器,分别获得多种模态的特征;其次,利用典型性相关的特征筛选策略对多种模态的特征进行筛选,获得多种模态的新特征;再次,构建解码器,所获的新特征作为输入,分别获得新的模态图像;然后,构建一个分类器,利用标签一致损失,更新自适应特征融合模型;最后,所获的多种模态的新特征,进行级联操作,获得融合特征。本发明能够自适应的学习不同模态的高层特征,具有更好的判别性。 | ||
搜索关键词: | 多模态 图像 自适应 特征 融合 方法 | ||
【主权项】:
1.一种多模态图像的自适应特征融合方法,其特征在于,包括以下步骤:步骤S1:构建编码器,并输入多种模态图像,分别获得多种模态的特征;步骤S2:利用典型性相关分析的特征筛选策略对多种模态的特征进行筛选,获得多种模态的新特征;步骤S3:构建解码器,将多种模态的新特征作为输入,分别获得多种模态新的模态图像;步骤S4.:构建分类器,并根据原模态图像和新的模态图像,利用标签一致损失,更新自适应特征融合模型;步骤S5:迭代训练自适应特征融合模型,使得标签一致损失收敛后,所获的多种模态的新特征,进行级联操作,获得融合特征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910539848.4/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序