[发明专利]基于轻量化网络模型的图像识别方法、装置及设备有效
申请号: | 201910566189.3 | 申请日: | 2019-06-27 |
公开(公告)号: | CN110288030B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 房斌;李婷 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/82;G06N3/0464;G06N3/047;G06N3/084 |
代理公司: | 重庆市前沿专利事务所(普通合伙) 50211 | 代理人: | 郭云 |
地址: | 400030 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于轻量化网络模型的图像识别方法、装置及设备。所述图像识别方法,包括以下步骤:S1,获取待识别的目标图像;S2,将目标图像输入至已训练的轻量化网络模型中;S3,利用已训练的轻量化网络模型对目标图像进行分类。其中,获得所述轻量化网络模型的过程包括以下步骤:S21,构造无全连接层的变体卷积神经网络;S22,通过softmax分类器对图像分类,对卷积层的权重进行更新;S23,采用权重更新后的变体卷积神经网络再次提取图像的特征,并对特征进行标准化处理;S24,将标准化后的特征按照宽度网络的构造方法生成特征节点和增强节点,确定最终的特征节点、增强节点个数,构造轻量化网络模型。 | ||
搜索关键词: | 基于 量化 网络 模型 图像 识别 方法 装置 设备 | ||
【主权项】:
1.一种基于轻量化网络模型的图像识别方法,其特征在于,包括以下步骤:S1,获取待识别的目标图像;S2,将目标图像输入至已训练的轻量化网络模型中;S3,利用已训练的轻量化网络模型对目标图像进行分类;其中,获得所述轻量化网络模型的过程包括以下步骤:S21,根据卷积神经网络的构造方式,构造无全连接层的变体卷积神经网络,所述变体卷积神经网络包括一个及其以上的网络层,所述网络层包括一个卷积层和一个池化层;S22,已标注的待分类图像经过变体卷积神经网络得到图像的特征图像,该特征输入softmax分类器,通过softmax分类器对图像分类,依据分类结果和已标注图像的真实值通过损失函数对卷积层的权重进行更新;S23,采用权重更新后的变体卷积神经网络再次提取图像的特征,并对特征进行标准化处理;S24,将标准化后的特征按照宽度网络的构造方法生成特征节点和增强节点,确定最终的特征节点、增强节点个数,构造轻量化网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910566189.3/,转载请声明来源钻瓜专利网。