[发明专利]一种基于深度学习的异常停车实时检测方法有效

专利信息
申请号: 201910570619.9 申请日: 2019-06-27
公开(公告)号: CN110298307B 公开(公告)日: 2021-07-20
发明(设计)人: 高飞;王金超;葛一粟;李云阳;卢书芳;张元鸣;邵奇可;陆佳炜 申请(专利权)人: 浙江工业大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/32;G06N3/04
代理公司: 杭州浙科专利事务所(普通合伙) 33213 代理人: 吴秉中
地址: 310014 *** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公布了一种基于深度学习的异常停车实时检测方法,包括有以下步骤:1)相机预置位设置以及相机标定;2)卷积神经网络模型初始化;3)获取当前视频帧与视频帧时间;4)检查相机工作状态;5)使用卷积神经网络模型对兴趣区域ROI进行车辆目标检测;6)维护静态目标跟踪队列;7)异常停车检测;8)异常停车目标上报。本发明提出了一种基于深度学习的异常停车实时检测算法,具有对环境变化较强的鲁棒性,实现了实时的检测效果以及较高的异常停车识别精度。
搜索关键词: 一种 基于 深度 学习 异常 停车 实时 检测 方法
【主权项】:
1.一种基于深度学习的异常停车实时检测方法,其特征在于,包括如下步骤:1)相机预置位设置以及相机标定;2)卷积神经网络模型初始化;3)获取当前视频帧与视频帧时间;4)检查相机工作状态;5)使用卷积神经网络模型对兴趣区域ROI进行车辆目标检测;6)维护静态目标跟踪队列;7)异常停车检测;8)异常停车目标上传。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910570619.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top