[发明专利]基于三维卷积神经网络的跌倒行为识别方法有效

专利信息
申请号: 201910571714.0 申请日: 2019-06-28
公开(公告)号: CN110555368B 公开(公告)日: 2022-05-03
发明(设计)人: 张九龙;邓莉娜;屈晓娥 申请(专利权)人: 西安理工大学
主分类号: G06V40/20 分类号: G06V40/20;G06V20/40;G06N3/04;G06N3/08
代理公司: 西安弘理专利事务所 61214 代理人: 王蕊转
地址: 710048 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于三维卷积神经网络的跌倒行为识别方法,首先获得并预处理跌倒数据集视频,得到跌倒行为视频样本;将视频采用基于混合高斯与自适应阈值的三帧差法结合的目标检测方法去除背景,再用小面积去除及形态学方法得到完整人体目标区域;提取人体目标区域的光流运动历史图像特征,然后对特征图像用数据重叠扩增的方式增加样本集;将重叠扩增后的跌倒行为样本集按照7:3的比例随机分成训练样本集和验证样本集输入3D卷积神经网络模型分类器并不断迭代训练,同时使用验证样本集不断验证模型分类器;将测试样本集输入训练后的模型分类器中,完成跌倒行为识别。本发明解决了现有跌倒检测方法受背景干扰导致分类识别率及精度低的问题。
搜索关键词: 基于 三维 卷积 神经网络 跌倒 行为 识别 方法
【主权项】:
1.基于三维卷积神经网络的跌倒行为识别方法,其特征在于,具体按照以下步骤实施:/n步骤1、获得并预处理跌倒数据集视频,得到跌倒行为视频样本;/n步骤2、将步骤1得到的视频采用基于混合高斯与自适应阈值的三帧差法结合的目标检测方法进行背景去除,再用小面积去除及形态学方法得到完整人体目标区域;提取人体目标区域的光流运动历史图像特征,然后对特征图像用数据重叠扩增的方式增加样本集;/n步骤3、将步骤2获得的重叠扩增后的跌倒行为样本集按照7:3的比例随机分成训练样本集和验证样本集;/n步骤4、将步骤3中的训练样本集输入3D卷积神经网络模型分类器并不断迭代训练,同时使用验证样本集不断验证模型分类器;/n步骤5、将步骤2的测试样本集输入步骤4训练后的模型分类器中,完成跌倒行为识别。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910571714.0/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top