[发明专利]基于NSST形态特征及深度KELM的浮选加药异常检测方法有效
申请号: | 201910573323.2 | 申请日: | 2019-06-28 |
公开(公告)号: | CN110287975B | 公开(公告)日: | 2022-05-13 |
发明(设计)人: | 廖一鹏;郑绍华;杨洁洁 | 申请(专利权)人: | 福州大学 |
主分类号: | G06V10/40 | 分类号: | G06V10/40;G06N20/00 |
代理公司: | 福州元创专利商标代理有限公司 35100 | 代理人: | 陈明鑫;蔡学俊 |
地址: | 350108 福建省福*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于NSST形态特征及深度KELM的浮选加药异常检测方法。首先,实时采集浮选槽表面的气泡图像,将图像NSST分解,得到低频子带图像和多尺度高频子带;其次,对低频图像二值化提取气泡亮点,计算各亮点的个数、面积、标准差和椭圆率,计算各尺度高频子带系数的分形维数、均值和方差,构成气泡图像的多尺度形态特征;然后,在KELM算法基础上,借鉴深度学习思想构建一种深度KELM,将量子计算引入遗传算法的优化中,并用于优化深度KELM的参数,构建自适应深度KELM;最后,通过多尺度形态特征和自适应深度KELM建立浮选加药异常检测模型。本发明平均识别率和运行效率明显高于现有检测方法,更加符合浮选生产在线检测的需求,为后续的加药自动化控制打下基础。 | ||
搜索关键词: | 基于 nsst 形态 特征 深度 kelm 浮选 异常 检测 方法 | ||
【主权项】:
1.一种基于NSST形态特征及深度KELM的浮选加药异常检测方法,其特征在于,包括如下步骤,步骤S1、采集不同加药状态下的气泡图像作为图像库,并从浮选厂化验室获取对应的实际加药量;步骤S2、对图像库的气泡图像进行NSST多尺度分解,提取多尺度形态特征,将多尺度形态特征作为输入,对应的加药量作为输出,训练深度核极限学习机;步骤S3、将深度核极限学习机中的自编码器层数k、惩罚系数C和核函数σ进行量子比特编码操作,以浮选加药异常检测的准确率当作适应度函数,通过量子旋转门更新种群,优选出一组深度核极限学习机的最优参数,建立浮选加药异常检测模型;步骤S4、实时采集浮选表面的气泡图像,对气泡图像进行NSST多尺度分解,得到低频子带图像和多尺度高频子带图像;步骤S5、采用二值化方法提取低频子带图像的亮点,计算各个亮点的个数、面积、标准差和椭圆率,计算各尺度高频子带系数的分形维数、均值和方差,获取气泡图像的多尺度形态特征;步骤S6、建立基于自适应深度核极限学习机的浮选加药异常检测模型,将多尺度形态特征作为输入,输出识别三种加药状态,异常状态下可进一步判别是加药过量还是欠量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910573323.2/,转载请声明来源钻瓜专利网。