[发明专利]一种机器视觉中印刷品缺陷自动分类方法在审
申请号: | 201910574709.5 | 申请日: | 2019-06-28 |
公开(公告)号: | CN110335262A | 公开(公告)日: | 2019-10-15 |
发明(设计)人: | 张二虎;李博;李佩霖;段敬红 | 申请(专利权)人: | 西安理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62 |
代理公司: | 西安弘理专利事务所 61214 | 代理人: | 王蕊转 |
地址: | 710048 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种机器视觉中印刷品缺陷自动分类方法,首先定义印刷品缺陷类型,将印刷品缺陷分类为暗缺陷、亮缺陷、刀丝和偏色四类;然后采集四类缺陷样本图像,并进行预处理以获得对应的形态特征图像,对缺陷样本及其对应的形态特征图像进行标记;设计卷积神经网络模型;优化选择合适的训练参数和训练策略,训练卷积神经网络模型;最后对于待分类的印刷缺陷图像,提取其形态特征图像,连同缺陷图像一起作为输入图像,进行分类,以确定其属于暗缺陷、亮缺陷、刀丝和偏色中的哪一类型。本发明解决了现有技术中存在的印刷缺陷特征提取鲁棒性不够好、分类识别的正确率较低的问题。 | ||
搜索关键词: | 印刷品缺陷 形态特征 图像 卷积神经网络 机器视觉 缺陷图像 缺陷样本 自动分类 暗缺陷 亮缺陷 刀丝 偏色 分类 预处理 缺陷特征提取 印刷 分类识别 输入图像 训练参数 优化选择 鲁棒性 正确率 采集 | ||
【主权项】:
1.一种机器视觉中印刷品缺陷自动分类方法,其特征在于,具体按照以下步骤实施:步骤1、定义印刷品缺陷类型,将印刷品缺陷分类为暗缺陷、亮缺陷、刀丝和偏色四类;步骤2、采集步骤1所述四类缺陷样本图像,并进行预处理以获得对应的形态特征图像,对缺陷样本及其对应的形态特征图像进行标记;步骤3、设计适合印刷缺陷分类的卷积神经网络模型;步骤4、优化选择合适的训练参数和训练策略,训练步骤3所设计的卷积神经网络模型;步骤5、对于待分类的印刷缺陷图像,提取其形态特征图像,连同缺陷图像一起作为输入图像,应用步骤4训练好的模型进行分类,以确定其属于暗缺陷、亮缺陷、刀丝和偏色中的哪一类型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910574709.5/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序