[发明专利]面向嵌入式系统的深度神经网络压缩和加速方法及系统有效

专利信息
申请号: 201910578644.1 申请日: 2019-06-28
公开(公告)号: CN110298446B 公开(公告)日: 2022-04-05
发明(设计)人: 郭庆北 申请(专利权)人: 济南大学
主分类号: G06N3/08 分类号: G06N3/08;G06N3/04;G06N3/06
代理公司: 北京睿智保诚专利代理事务所(普通合伙) 11732 代理人: 周新楣
地址: 250022 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向嵌入式系统的深度神经网络压缩方法及系统,所述方法包括:获取待压缩的原始神经网络模型;对所述神经网络模型中各层的过滤器/输出神经元进行重要性评估;基于重要性评估结果,对所述神经网络模型中各层的过滤器/输出神经元采用聚类方法进行分组;根据预设的每层的压缩率,采用聚类中心确定弱连接并进行裁剪,得到压缩后的模型;将压缩后的模型通过局部和全局微调恢复它的识别性能;将所述压缩后的模型部署到嵌入式系统中,采用本发明的压缩方法,一方面降低网络的存储空间和加速网络的推断,另一方面保持网络的识别精度。
搜索关键词: 面向 嵌入式 系统 深度 神经网络 压缩 加速 方法
【主权项】:
1.一种面向嵌入式系统的深度神经网络压缩和加速方法,其特征在于,包括:获取待压缩的原始神经网络模型;对所述神经网络模型中各层的过滤器/输出神经元的每个输入通道进行重要性评估;基于重要性评估结果,对所述神经网络模型中各层的过滤器/输出神经元采用聚类方法进行分组;根据预设的每层的压缩率,采用聚类中心确定弱连接并进行裁剪,得到压缩后的模型;将压缩后的模型通过局部和全局微调恢复识别性能;将所述压缩后的模型部署到嵌入式系统中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于济南大学,未经济南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910578644.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top