[发明专利]基于深度学习算法的油井产量预测方法有效
申请号: | 201910596787.5 | 申请日: | 2019-07-02 |
公开(公告)号: | CN110400006B | 公开(公告)日: | 2022-06-03 |
发明(设计)人: | 曹小朋;杨勇;卜亚辉;张世明;胡慧芳;李春雷;王东方;段敏;张林凤;刘营 | 申请(专利权)人: | 中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司勘探开发研究院 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/02;G06Q50/06;G06N3/06 |
代理公司: | 济南日新专利代理事务所(普通合伙) 37224 | 代理人: | 崔晓艳 |
地址: | 257000 山*** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习算法的油井产量预测方法,该基于深度学习算法的油井产量预测方法包括:步骤1,获取数据并进行质量检查;步骤2,进行数据处理及划分;步骤3,建立学习模型;步骤4,采用步骤3搭建的模型开展训练,并进行验证;步骤5,预测油井产量。该基于深度学习算法的油井产量预测方法通过训练建立储层物性、工作制度、开发阶段等因素与产油量、产液量之间的关系,发挥数据驱动算法的优势,建立多因素油井产量预测模型。 | ||
搜索关键词: | 基于 深度 学习 算法 油井 产量 预测 方法 | ||
【主权项】:
1.基于深度学习算法的油井产量预测方法,其特征在于,该基于深度学习算法的油井产量预测方法包括:步骤1,获取数据并进行质量检查;步骤2,进行数据处理及划分;步骤3,建立学习模型;步骤4,采用步骤3搭建的模型开展训练,并进行验证;步骤5,预测油井产量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司勘探开发研究院,未经中国石油化工股份有限公司;中国石油化工股份有限公司胜利油田分公司勘探开发研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910596787.5/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理