[发明专利]基于深度学习算法的光场显微三维重建方法及装置在审

专利信息
申请号: 201910602894.4 申请日: 2019-07-05
公开(公告)号: CN110443882A 公开(公告)日: 2019-11-12
发明(设计)人: 戴琼海;乔晖;李晓煦 申请(专利权)人: 清华大学
主分类号: G06T17/00 分类号: G06T17/00;G06N3/04;G06N3/08;G06N3/063
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 张润
地址: 10008*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习算法的光场显微三维重建方法及装置,其中,方法包括:搭建光场显微成像系统;通过对光场显微成像系统进行仿真得到成像系统的点扩散函数;生成仿真样本体分布数据集;通过点扩散函数与对应的样本数据生成仿真光场数据集,并对可能产生的噪声及背景模型进行校正;搭建深度卷积神经网络,以仿真光场数据作为网络的输入,并以仿真样本体分布数据作为网络的输出,根据显微样本设计损失函数对网络进行训练;在完成模型的训练后,将待重建的光场显微数据输入模型进行测试,获取对应样本体分布数据的预测值。该方法可以在保持光场快速采集三维信息优势的同时,实现快速的、高分辨的、少伪影的光场数据三维重建。
搜索关键词: 光场 显微 光场数据 三维重建 显微成像系统 仿真样本 分布数据 学习算法 卷积神经网络 点扩散函数 分布数据集 背景模型 成像系统 快速采集 三维信息 损失函数 样本设计 样本数据 网络 高分辨 通过点 伪影 校正 噪声 样本 测试 扩散 输出 重建 预测
【主权项】:
1.一种基于深度学习算法的光场显微三维重建方法,其特征在于,包括以下步骤:搭建光场显微成像系统,以采集空间与角度四维光场数据;根据光场传播原理对所述光场显微成像系统进行仿真,以得到成像系统的点扩散函数;获取三维样本体分布数据集的参数及分布特性,生成仿真样本体分布数据集;通过所述点扩散函数与对应的样本数据生成仿真光场数据集,并对实际成像过程中可能产生的噪声及背景模型进行校正;搭建以生成对抗网络为基础的深度卷积神经网络,以所述仿真光场数据作为网络的输入,并以所述仿真样本体分布数据作为所述网络的输出,根据显微样本设计损失函数对所述网络进行训练;以及在完成所述模型的训练后,将待重建的光场显微数据输入所述模型进行测试,获取对应样本体分布数据的预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910602894.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top