[发明专利]基于深度特征和NTV-RPCA的织物疵点检测方法有效
申请号: | 201910604527.8 | 申请日: | 2019-07-05 |
公开(公告)号: | CN110310277B | 公开(公告)日: | 2020-07-24 |
发明(设计)人: | 李春雷;刘洲峰;王珺璞;朱永胜;杨艳;李碧草 | 申请(专利权)人: | 中原工学院 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T7/136;G06T7/40;G06T7/50;G06T5/50;G06T5/00;G06K9/46 |
代理公司: | 郑州优盾知识产权代理有限公司 41125 | 代理人: | 张彬 |
地址: | 451191 河南省郑*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出一种基于深度特征和NTV‑RPCA的织物疵点检测方法,其步骤为:首先,采用深度网络VGG16对织物图像进行特征提取,得到织物图像的多层次深度特征图,并对多层次深度特征图进行均匀重叠分块;然后,构造NTV‑RPCA模型,并采用ADMM算法交替迭代搜索每一层次的特征矩阵对应的最优的稀疏矩阵;再根据最优的稀疏矩阵生成多个显著图,并利用低秩分解模型融合多个显著图获得最终显著图;最后,通过自适应阈值分割算法对最终显著图进行分割,定位出疵点位置。本发明采用深度网络和NTV‑RPCA模型相结合,有效地表征织物图像的复杂纹理特征和消除图像中的噪声影响,使得检测结果具有更高的自适应性和检测精度。 | ||
搜索关键词: | 基于 深度 特征 ntv rpca 织物 疵点 检测 方法 | ||
【主权项】:
1.一种基于深度特征和NTV‑RPCA的织物疵点检测方法,其特征在于,其步骤如下:步骤一:特征提取:将织物图像输入深度网络VGG16中,利用深度网络VGG16中的各个卷积层分别提取织物图像对应的多层次深度特征,根据每一层次深度特征建立织物图像对应的深度特征图;步骤二:图像分块:对每一层次的深度特征图进行均匀重叠分块,并分别计算每一层次的深度特征图对应的特征矩阵;步骤三:模型构建及求解:根据非凸全变差正则项和低秩分解模型构建NTV‑RPCA模型,并采用ADMM算法对包含特征矩阵的NTV‑RPCA模型进行交替迭代搜索获得最优的稀疏矩阵;步骤四:显著图生成及融合:根据步骤三中求得的稀疏矩阵生成多个显著图,再采用低秩分解模型对多个显著图进行融合,获得织物图像的最终显著图;步骤五:阈值分割:采用自适应阈值分割方法对最终显著图进行阈值分割,定位出织物图像的疵点位置。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中原工学院,未经中原工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910604527.8/,转载请声明来源钻瓜专利网。