[发明专利]一种基于时间及用户的转发序列的微博流行度预测方法有效
申请号: | 201910621977.8 | 申请日: | 2019-07-10 |
公开(公告)号: | CN110336700B | 公开(公告)日: | 2021-09-14 |
发明(设计)人: | 黄宏宇;刘海燕 | 申请(专利权)人: | 重庆大学 |
主分类号: | H04L12/24 | 分类号: | H04L12/24;H04L12/58;G06F16/35;G06Q10/04;G06Q50/00 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400044 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于时间及用户的转发序列的微博流行度预测模型,属于涉及社交网络中消息流行度预测领域,包括以下步骤:S1:利用循环神经网络对微博的转发序列进行建模,用来捕获消息传播过程的长距离依赖;S2:将隐藏层的输出结果进行非线性变换网络,学习在传播过程中每个时间步的速率;S3:利用速率得到的早期趋势加速度和早期的流行度,并在用户活跃度的优化下,对微博未来的流行度进行预测。本发明保证了在消息传播的早期更精准地预测其在未来的流行趋势,该模型既利用了历史传播信息,又很好地刻画了微博的传播过程。 | ||
搜索关键词: | 一种 基于 时间 用户 转发 序列 流行 预测 方法 | ||
【主权项】:
1.一种基于时间及用户的转发序列的微博流行度预测模型,其特征在于:包括以下步骤:S1:利用循环神经网络对微博的转发序列进行建模,用来捕获消息传播过程的长距离依赖;S2:将隐藏层的输出结果进行非线性变换网络,学习在传播过程中每个时间步的速率;S3:利用速率得到的早期趋势加速度和早期的流行度,并在用户活跃度的优化下,对微博未来的流行度进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910621977.8/,转载请声明来源钻瓜专利网。