[发明专利]基于迁移学习的半自动神经网络调优方法在审
申请号: | 201910629527.3 | 申请日: | 2019-07-12 |
公开(公告)号: | CN110443352A | 公开(公告)日: | 2019-11-12 |
发明(设计)人: | 管楚;潘健民;张鹏 | 申请(专利权)人: | 阿里巴巴集团控股有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06Q50/26 |
代理公司: | 北京国昊天诚知识产权代理有限公司 11315 | 代理人: | 许振新;朱文杰 |
地址: | 英属开曼群岛大开*** | 国省代码: | 开曼群岛;KY |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本公开涉及训练基于迁移学习的半自动调优神经网络的方法,包括获取一个或多个类别的训练样本,每个类别的训练样本包括相应的黑样本和白样本;整合所述一个或多个类别的黑样本和白样本;使用经整合的黑样本和白样本来训练通用型网络;将经训练的所述通用型网络的至少一部分迁移到专用型网络中,所述专用型网络包括分别与所述一个或多个类别对应的一个或多个子网络;以及使用所述一个或多个类别的训练样本来训练所述专用型网络以使得所述一个或多个子网络分别输出针对对应类别的分类结果。本公开还涉及该网络架构的形成和训练方法以及相应的半自动调优神经网络架构、装置和设备。 | ||
搜索关键词: | 样本 神经网络 专用型 网络 训练样本 迁移 通用型 整合 多个类别 分类结果 网络包括 网络架构 架构 输出 学习 | ||
【主权项】:
1.一种训练基于迁移学习的半自动调优神经网络的方法,包括:获取一个或多个类别的训练样本,每个类别的训练样本包括相应的黑样本和白样本;整合所述一个或多个类别的黑样本和白样本;使用经整合的黑样本和白样本来训练通用型网络;将经训练的所述通用型网络的至少一部分迁移到专用型网络中,所述专用型网络包括分别与所述一个或多个类别对应的一个或多个子网络;以及使用所述一个或多个类别的训练样本来训练所述专用型网络以使得所述一个或多个子网络分别输出针对对应类别的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于阿里巴巴集团控股有限公司,未经阿里巴巴集团控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910629527.3/,转载请声明来源钻瓜专利网。