[发明专利]一种基于ZYNQ的通用卷积神经网络加速结构及设计方法有效

专利信息
申请号: 201910646515.1 申请日: 2019-07-17
公开(公告)号: CN110348574B 公开(公告)日: 2022-02-15
发明(设计)人: 刘杰;马力强 申请(专利权)人: 哈尔滨理工大学
主分类号: G06N3/08 分类号: G06N3/08;G06N3/04
代理公司: 哈尔滨华夏松花江知识产权代理有限公司 23213 代理人: 岳昕
地址: 150080 黑龙*** 国省代码: 黑龙江;23
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种可以用来加速卷积神经网络中多通道卷积运算的方法,其特点是该加速器可以加速任何结构的神经网络,可编程、可在线配置,支持的特征图大小、特征图通道数、卷积核大小、卷积核通道数、卷积步幅灵活可变,控制逻辑简单,卷积运算并行度高,该加速器可以应用到任何ZYNQ架构的平台上,用户可以根据自己芯片中dsp的资源对加速电路裁剪;最小可以支持128个dsp(Digital Signal Processing)资源。本发明所述一种基于ZYNQ的通用卷积神经网络加速结构,包括:ARM处理器、总线互联、DDR4控制器、内存条、寄存器、卷积运算通路、辅助运算通路、池化运算通路、访存模块。
搜索关键词: 一种 基于 zynq 通用 卷积 神经网络 加速 结构 设计 方法
【主权项】:
1.一种基于ZYNQ的通用卷积神经网络加速结构及设计方法,包括:ZYNQ芯片、内存条;所述内存条,用于存储卷积网络计算的中间特征数据、每层网络的权重数据、偏置数据,以完成整个网络的运算;所述ZYNQ芯片,用于完成整个加速器电路的部署及实现。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨理工大学,未经哈尔滨理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910646515.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top