[发明专利]一种基于混合神经网络模型的图像识别方法、装置及设备有效
申请号: | 201910655663.X | 申请日: | 2019-07-19 |
公开(公告)号: | CN110363290B | 公开(公告)日: | 2023-07-25 |
发明(设计)人: | 左亚尧;洪嘉伟;马铎 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06V10/82 | 分类号: | G06V10/82;G06N3/0464;G06N3/08;G06V10/40;G06V10/764;G06V10/80;G06N3/0442 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 王晓坤 |
地址: | 510060 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于混合神经网络模型的图像识别方法、装置、设备以及计算机可读存储介质,包括:将待识别图像输入至卷积自编码器中进行预处理;利用基于迁移学习构建的特性提取器提取预处理后的待识别图像的图像特征;利用长短期记忆网络模型提取所述预处理后的待识别图像的内部时序特征;利用特征融合门及特征筛选门,对所述图像特征与所述内部时序特征融合筛选,得到所述识别图像的目标特征;利用softmax分类器对所述目标特征进行分类,得到所述待识别图像的分类结果。本发明所提供的方法、装置、设备以及计算机可读存储介质,可以大大减少训练神经网络模型需要的图像数量,同时提高了图像识别的精确度。 | ||
搜索关键词: | 一种 基于 混合 神经网络 模型 图像 识别 方法 装置 设备 | ||
【主权项】:
1.一种基于混合神经网络模型的图像识别方法,其特征在于,包括:将待识别图像输入至卷积自编码器中进行预处理;利用基于迁移学习构建的特性提取器提取预处理后的待识别图像的图像特征;利用长短期记忆网络模型提取所述预处理后的待识别图像的内部时序特征;利用特征融合门及特征筛选门,对所述图像特征与所述内部时序特征融合筛选,得到所述识别图像的目标特征;利用softmax分类器对所述目标特征进行分类,得到所述待识别图像的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910655663.X/,转载请声明来源钻瓜专利网。