[发明专利]基于编码归纳-解码推敲的汉-越低资源神经机器翻译方法有效

专利信息
申请号: 201910676603.6 申请日: 2019-07-25
公开(公告)号: CN110489766B 公开(公告)日: 2020-07-10
发明(设计)人: 余正涛;张勇丙;郭军军;黄于欣;高盛祥;王振晗 申请(专利权)人: 昆明理工大学
主分类号: G06F40/58 分类号: G06F40/58;G06N3/04
代理公司: 昆明人从众知识产权代理有限公司 53204 代理人: 沈艳尼
地址: 650093 云*** 国省代码: 云南;53
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及基于编码归纳‑解码推敲的汉‑越低资源神经机器翻译方法,属于自然语言处理技术领域。本发明受人工翻译经验的启发,提出了一种“编码归纳‑解码推敲”框架的低资源神经机器翻译方法,本发明首先基于编码网络对源语言进行编码,并提出一种基于选择性门控的语义归纳方法,拟对源语言的语义进行理解和归纳;然后将源语言归纳后的语义信息用于目标语言解码推敲,拟实现目标语言的推敲解码。本发明针对当前汉‑越低资源机器翻译语料匮乏的现实情况,实现了编码器和解码器信息的充分利用,在提升汉‑越神经机器翻译的性能的基础上并保证了译文与原文的语义相似。
搜索关键词: 基于 编码 归纳 解码 推敲 资源 神经 机器翻译 方法
【主权项】:
1.基于编码归纳-解码推敲的汉-越低资源神经机器翻译方法,其特征在于:/n所述基于编码归纳-解码推敲的汉-越低资源神经机器翻译方法的具体步骤如下:/nStep1、收集汉-越双语平行句对,并将汉-越平行语料分为训练集、验证集和测试集;/nStep2、将不定长的句子序列作为神经网络输入,首先经过Bi-GRU生成源语言句子的隐藏输出,然后将输出的隐状态作为反向增强神经网络的输入;通过反向增强增强神经网络得出最后的每个时间步长对应的隐状态输出;/nStep3、在Step2的基础上,将反向增强神经网络的输出经过编码归纳门控神经网络,对编码端的句子语义信息进行归纳,得到编码端源句子的归纳信息;/nStep4、在Step3的基础上,将编码端的归纳信息融入到解码端,通过不断的推敲过程生成可靠的译文。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910676603.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top