[发明专利]一种基于Blending集成学习的短期负荷预测方法在审
申请号: | 201910690227.6 | 申请日: | 2019-07-29 |
公开(公告)号: | CN110472778A | 公开(公告)日: | 2019-11-19 |
发明(设计)人: | 许佳辉;王向文;杨俊杰;刘子琦;孙充;戚创创 | 申请(专利权)人: | 上海电力大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06;G06N20/20;G06N20/10 |
代理公司: | 31225 上海科盛知识产权代理有限公司 | 代理人: | 叶敏华<国际申请>=<国际公布>=<进入 |
地址: | 200090 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于Blending集成学习的短期负荷预测方法,包括步骤:1、数据预处理;2、将数据分为训练集、验证集、测试集;3、搭建两层Blending模型,第一层模型选择学习能力、预测性能优秀的多个不同模型作为初学习器,第二层选择XGBoost模型作为次学习器,并再将训练集、验证集以HOLD‑OUT方法分成两部分,第一部分数据集作为第一层模型的训练数据,将训练好的优秀模型分别预测第二部分数据集和步骤2中的测试集;4、将步骤3中预测的输出作为一个新的数据集,来训练XGBoost模型;5、调整XGBoost模型超参数,使其达到最好的效果得到预测结果。与现有技术相比,本发明具有更好的泛化能力,比单一模型具有更好的自适应能力及更高的精度。 | ||
搜索关键词: | 数据集 测试集 第一层 学习器 训练集 验证集 短期负荷预测 数据预处理 自适应能力 集成学习 模型选择 学习能力 训练数据 预测结果 预测性能 预测 两层 输出 | ||
【主权项】:
1.一种基于Blending集成学习的短期负荷预测方法,该方法用于对电力负荷进行预测,其特征在于,包括下列步骤:/n1)对采集的电力负荷特征数据进行预处理;/n2)将预处理后的数据集分为训练集、验证集和测试集;/n3)搭建八个单一模型,包括极端梯度提升XGBoost模型、轻量级梯度提升机LightGBM、长短记忆网络LSTM模型、梯度下降树GBDT模型、深度信念网络DBN模型、K近邻法KNN模型、支持向量机SVM和BP神经网络模型,采用同一批数据对各个单一模型单独进行负荷预测,选取六个单一模型作为第一层的预测模型;/n4)将步骤二划分好的训练集与验证集划分为两部分,利用第一部分数据集的训练集和验证集来训练选取的六个单一模型,通过判断评价指标RMSE是否达到最小,来调整超参数,并将训练好的模型对第二部分数据集进行预测,将预测结果作为新的训练集;/n5)将第一部分数据集的训练集和验证集训练选取的六个单一模型,将训练好的模型对步骤二的测试集进行预测,并将预测结果作为新的测试集;/n6)选取XGBoost作为第二层的预测模型,采用步骤4)中新的训练集对该单一模型进行训练,调整超参数;/n7)将步骤6)训练好的XGBoost模型对步骤5)中新的测试集进行预测,获取预测结果并计算MAPE和RMSE两个评价指标的值,完成短期负荷预测。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海电力大学,未经上海电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910690227.6/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理