[发明专利]样本筛选及表情识别方法、神经网络、设备及存储介质有效
申请号: | 201910690684.5 | 申请日: | 2019-07-29 |
公开(公告)号: | CN110532880B | 公开(公告)日: | 2022-11-22 |
发明(设计)人: | 解为成;田怡;沈琳琳 | 申请(专利权)人: | 深圳大学 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/774;G06N3/08 |
代理公司: | 深圳青年人专利商标代理有限公司 44350 | 代理人: | 吴桂华 |
地址: | 518060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明适用计算机技术领域,提供了一种样本筛选及表情识别方法、神经网络、设备及存储介质,其中,利用多元组样本,进行神经网络的训练,在每一迭代步,确定锚样本与正样本之间的第一样本距离以及锚样本与负样本之间的第二样本距离,根据样本距离的分布统计特性,构建用于对多元组样本进行筛选的边界条件,利用该边界条件对多元组样本进行筛选,筛选所得保留结果进入下一迭代步的训练,这样,可在神经网络的训练过程中,对异常多元组样本进行筛除,避免了异常多元组样本对神经网络训练结果的影响,从而提高了表情分类识别准确度。 | ||
搜索关键词: | 样本 筛选 表情 识别 方法 神经网络 设备 存储 介质 | ||
【主权项】:
1.一种样本筛选方法,其特征在于,包括:/n获得多元组样本,所述多元组样本包括:锚样本、正样本及负样本;/n利用所述多元组样本,进行神经网络的训练,在训练的每一迭代步,利用所述神经网络对多元组样本进行处理,得到所述锚样本的第一特征表达向量、所述正样本的第二特征表达向量及所述负样本的第二特征表达向量;根据所述第一特征表达向量及所述第二特征表达向量确定所述锚样本与所述正样本之间的第一样本距离,根据所述第一特征表达向量与所述第三特征表达向量确定所述锚样本与所述负样本之间的第二样本距离;根据所述第一样本距离与所述第二样本距离的分布统计特性,构建用于对所述多元组样本进行筛选的边界条件;利用所述边界条件对所述多元组样本进行筛选,筛选所得保留结果进入下一迭代步的训练。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910690684.5/,转载请声明来源钻瓜专利网。