[发明专利]基于统计约束损失函数的脑梗塞病灶自动分割方法有效
申请号: | 201910693876.1 | 申请日: | 2019-07-30 |
公开(公告)号: | CN110533668B | 公开(公告)日: | 2021-09-21 |
发明(设计)人: | 叶初阳;刘妍麟;刘志文 | 申请(专利权)人: | 北京理工大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06N3/04;G06N3/08 |
代理公司: | 北京理工大学专利中心 11120 | 代理人: | 高会允 |
地址: | 100081 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于统计约束损失函数的脑梗塞病灶自动分割方法,能够提升病灶分割结果的准确性。其主要的思路为:获取脑部弥散加权磁共振图像进行预处理,获得b0图像和DWI图像并计算出表观扩散系数ADC真值图像;构建卷积神经网络,取手工标注的病灶标注图像、DWI图像以及ADC真值图像输入到卷积神经网络中进行迭代训练,卷积神经网络中预先定义四项损失函数,包括Dice系数损失函数、交叉熵损失函数、体积误差损失函数以及ADC值误差损失函数;在每一次迭代过程中,根据卷积神经网络的分割结果和病灶标注图像对四项损失函数进行优化;迭代训练结束后获得训练好的卷积神经网络;采用训练好的卷积神经网络对脑部弥散加权磁共振图像进行脑梗塞病灶的自动分割。 | ||
搜索关键词: | 基于 统计 约束 损失 函数 梗塞 病灶 自动 分割 方法 | ||
【主权项】:
1.基于统计约束损失函数的脑梗塞病灶自动分割方法,其特征在于,该方法具体为:/n获取脑部弥散加权磁共振图像进行预处理,预处理后以磁敏感参数b=0时的脑部弥散加权磁共振图像为b0图像,以磁敏感参数b≠0时的脑部弥散加权磁共振图像为DWI图像,根据b0图像和DWI图像计算出表观扩散系数ADC真值图像;/n构建卷积神经网络,取手工标注的病灶标注图像、所述DWI图像以及ADC真值图像输入到所述卷积神经网络中进行迭代训练,所述卷积神经网络中预先定义四项损失函数,包括Dice系数损失函数、交叉熵损失函数、体积误差损失函数以及ADC值误差损失函数;在每一次迭代过程中,根据所述卷积神经网络的分割结果和所述病灶标注图像对四项损失函数进行优化;迭代训练结束后获得训练好的卷积神经网络;/n采用训练好的卷积神经网络对脑部弥散加权磁共振图像进行脑梗塞病灶的自动分割。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京理工大学,未经北京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910693876.1/,转载请声明来源钻瓜专利网。