[发明专利]一种基于深度卷积神经网络的鞍部点识别方法有效

专利信息
申请号: 201910696431.9 申请日: 2019-07-30
公开(公告)号: CN110569871B 公开(公告)日: 2022-09-30
发明(设计)人: 孔月萍;党爽;曾军;张晶晶;张茜;高凯;柯希林;李凯明 申请(专利权)人: 西安建筑科技大学;中国人民解放军61540部队
主分类号: G06K9/62 分类号: G06K9/62;G06N3/08;G06N3/04
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 李鹏威
地址: 710055 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度卷积神经网络的鞍部点识别方法,包括以下步骤:1)构建训练样本集;2)建立改进的鞍部特征深度学习卷积神经网络模型;3)设置训练改进的鞍部特征深度学习卷积神经网络模型所需的各种参数,对改进的鞍部特征深度学习卷积神经网络模型进行训练,使得其能够对DEM数据中的潜在鞍部点进行自动识别,然后通过位置回归MLP网络对鞍部点坐标进行修正,确定初选鞍部点;4)在初选鞍部点中选取识别概率大于设定阈值的threshold者作为最终鞍部点,提取该最终鞍部点的修正坐标,并将该最终鞍部点的修正坐标映射回原始DEM中,得最终的鞍部点标识图,该方法能够通过鞍部特征的深度学习神经网络对DEM数据中的鞍部点进行自动标识。
搜索关键词: 一种 基于 深度 卷积 神经网络 鞍部 识别 方法
【主权项】:
1.一种基于深度卷积神经网络的鞍部点识别方法,其特征在于,包括以下步骤:/n1)构建训练样本集,所述训练样本集由m+n幅DEM山地数据构成,其中,m=n,n为包含鞍部区域的正样本数据集A={A
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安建筑科技大学;中国人民解放军61540部队,未经西安建筑科技大学;中国人民解放军61540部队许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910696431.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top