[发明专利]一种基于静息态脑电数据的年龄段分类方法有效
申请号: | 201910701028.0 | 申请日: | 2019-07-31 |
公开(公告)号: | CN110458066B | 公开(公告)日: | 2022-11-18 |
发明(设计)人: | 何良华;任强 | 申请(专利权)人: | 同济大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;A61B5/369;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 上海科盛知识产权代理有限公司 31225 | 代理人: | 叶敏华 |
地址: | 200092 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于静息态脑电数据的年龄段分类方法,包括以下步骤:S1、采集各年龄段对应的原始静息态脑电数据;S2、对原始静息态脑电数据进行预处理,得到去除伪迹的静息态脑电数据;S3、构建卷积神经网络,并将去除伪迹的静息态脑电数据输入给卷积神经网络,对卷积神经网络进行训练和测试,得到训练好的卷积神经网络;S4、由训练好的卷积神经网络对实际静息态脑电数据进行年龄段分类。与现有技术相比,本发明将静息态脑电数据按脑区划分并进行去伪迹处理,通过卷积神经网络分别提取不同脑区上的特征,以根据不同脑区的特征进行年龄段分类,不仅降低了脑电数据预处理的复杂性,也解决了针对脑电数据无法选择合适模型的问题。 | ||
搜索关键词: | 一种 基于 静息态脑电 数据 年龄段 分类 方法 | ||
【主权项】:
1.一种基于静息态脑电数据的年龄段分类方法,其特征在于,包括以下步骤:/nS1、根据实际年龄段分类情况,采集各年龄段对应的原始静息态脑电数据;/nS2、对原始静息态脑电数据进行预处理,得到去除伪迹的静息态脑电数据;/nS3、构建卷积神经网络,并将去除伪迹的静息态脑电数据输入给卷积神经网络,对卷积神经网络进行训练和测试,得到训练好的卷积神经网络;/nS4、由训练好的卷积神经网络对实际静息态脑电数据进行年龄段分类。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于同济大学,未经同济大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910701028.0/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置