[发明专利]基于shapelet的时间序列早期分类方法及设备在审
申请号: | 201910705734.2 | 申请日: | 2019-08-01 |
公开(公告)号: | CN110389975A | 公开(公告)日: | 2019-10-29 |
发明(设计)人: | 陈晓方;万晓雪;谢永芳;黄兆可 | 申请(专利权)人: | 中南大学 |
主分类号: | G06F16/2458 | 分类号: | G06F16/2458;G06K9/62 |
代理公司: | 长沙轩荣专利代理有限公司 43235 | 代理人: | 王丹 |
地址: | 410000 湖南*** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于shapelet的时间序列早期分类方法及设备,其中该方法包括:获取多变量时间序列的多个子序列,并将所述子序列作为候选shapelet;分别计算多个候选shapelet与所述多变量时间序列之间的距离;对每个候选shapelet进行质量评估,得到每个候选shapelet的质量评估结果,并按照质量评估结果由高至低的顺序,从多个候选shapelet中选取k个shapelet;计算所述k个shapelet中每个shapelet与所述多变量时间序列之间的距离,得到距离矩阵;将所述距离矩阵放到机器学习分类器中进行训练,得到准确率的训练结果;对早期性的结果进行判断,结合早期性的结果和准确率的训练结果得到综合的结果表现。本发明提供的时间序列早期分类方法能对鉴别性特征不受维度限制的多变量时间序列进行分类。 | ||
搜索关键词: | 时间序列 多变量 质量评估结果 分类 距离矩阵 训练结果 准确率 鉴别性特征 机器学习 质量评估 分类器 子序列 维度 表现 | ||
【主权项】:
1.一种基于shapelet的时间序列早期分类方法,其特征在于,包括:获取多变量时间序列的多个子序列,并将所述子序列作为候选shapelet;分别计算多个候选shapelet与所述多变量时间序列之间的距离;对每个候选shapelet进行质量评估,得到每个候选shapelet的质量评估结果,并按照质量评估结果由高至低的顺序,从多个候选shapelet中选取k个shapelet;计算所述k个shapelet中每个shapelet与所述多变量时间序列之间的距离,得到距离矩阵;将所述距离矩阵放到机器学习分类器中进行训练,得到准确率的训练结果;对早期性的结果进行判断,结合早期性的结果和准确率的训练结果得到综合的结果表现。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910705734.2/,转载请声明来源钻瓜专利网。
- 上一篇:数据分析方法及系统
- 下一篇:一种多接口数据的调度方法和装置