[发明专利]一种基于深度学习的热轧带钢板凸度预报方法有效

专利信息
申请号: 201910715086.9 申请日: 2019-08-05
公开(公告)号: CN110428175B 公开(公告)日: 2022-05-24
发明(设计)人: 赵强;苏帆帆;汪晋宽;韩英华 申请(专利权)人: 东北大学秦皇岛分校
主分类号: G06Q10/06 分类号: G06Q10/06;G06Q50/04;G06F16/215;G06F16/2458;G06N3/04
代理公司: 北京联创佳为专利事务所(普通合伙) 11362 代理人: 刘美莲
地址: 066004 河北*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的热轧带钢板凸度预报方法,包括以下步骤:S1,采集并记录带钢生产数据,然后对采集到的数据进行预处理,包括缺失值删除、异常值删除、归一化;S2,根据所述带钢生产数据,利用基于Morisita指数的属性选择方法,去除所采集数据中的冗余与不相关属性,筛选出能够表征板凸度变化的最少数量的属性构成预报模型的输入变量集;S3,基于所述的输入变量集建立基于深广卷积神经网络的带钢出口板凸度预报模型,从而获得热轧带钢出口板凸度。本发明利用卷积神经网络中的卷积层提取数据的高阶特征和不变性特征,学习变量间局部相关关系,并结合深度神经网络的全局特征学习能力,显著提高了板凸度预报精度。
搜索关键词: 一种 基于 深度 学习 热轧 钢板 预报 方法
【主权项】:
1.一种基于深度学习的热轧带钢板凸度预报方法,其特征在于,包括以下步骤:S1,采集并记录带钢生产数据,然后对采集到的数据进行预处理,包括缺失值删除、异常值删除、归一化;S2,根据所述带钢生产数据,利用基于Morisita指数的属性选择方法,去除所采集数据中的冗余与不相关属性,筛选出能够表征板凸度变化的最少数量的属性构成预报模型的输入变量集;S3,基于所述的输入变量集建立基于深广卷积神经网络的带钢出口板凸度预报模型,从而获得热轧带钢出口板凸度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学秦皇岛分校,未经东北大学秦皇岛分校许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910715086.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top