[发明专利]结肠腺体图像自动分割的深度神经网络算法有效

专利信息
申请号: 201910727851.9 申请日: 2019-08-08
公开(公告)号: CN110428432B 公开(公告)日: 2022-02-01
发明(设计)人: 郭晓鹏;梅礼晔;孟令玉;李华光 申请(专利权)人: 梅礼晔
主分类号: G06T7/12 分类号: G06T7/12;G06T5/00;G06N3/04;G06N3/08
代理公司: 武汉聚信汇智知识产权代理有限公司 42258 代理人: 马尚伟
地址: 430072 湖北省武*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于图像分析区域分割技术领域,公开了结肠腺体图像自动分割的深度神经网络算法。1.构建数据集:结肠腺体数据作为训练集合,获取实例图和轮廓图;2.构建模型:模型网络包括密集卷积神经网络和Refined U‑Net,密集卷积神经网络用来提取图像的丰富的初级特征信息,与密集卷积神经网络连接的Refined U‑Net网络,学习实例和轮廓的特征信息;3.确定模型损失函数:损失函数为Jaccard和焦点损失之和;4.信息融合。本技术方案采用深度密集神经网路的特征复用、参数高效等特点、利用Refined U‑net网络的低级特征和高层特征结合的特征,构建深度学习网络模型;采用焦点损失函数,解决数据集的类别不平衡问题,有效的使轮廓准确分割;最终实现结肠腺体图像分割快速、清晰、准确。
搜索关键词: 结肠 腺体 图像 自动 分割 深度 神经网络 算法
【主权项】:
1.结肠腺体图像自动分割的深度神经网络算法,其特征在于,包括以下步骤:(1)构建数据集:结肠腺体数据作为训练集合,获取实例图和轮廓图;(2)构建模型:模型网络包括密集卷积神经网络和Refined U‑Net,密集卷积神经网络用来提取图像的丰富的初级特征信息,与密集卷积神经网络连接的Refined U‑Net网络,学习实例和轮廓的特征信息;(3)确定模型损失函数:损失函数为Jaccard和焦点损失之和;(4)信息融合。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于梅礼晔,未经梅礼晔许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910727851.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top