[发明专利]考虑较少训练数据的基于深度机器学习的磁共振成像质量分类在审
申请号: | 201910744073.4 | 申请日: | 2019-08-13 |
公开(公告)号: | CN110858315A | 公开(公告)日: | 2020-03-03 |
发明(设计)人: | S.布劳恩;B.梅尔赫;陈潇;B.L.奥德里;M.S.纳达 | 申请(专利权)人: | 西门子医疗有限公司 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06T7/00;G06T7/194 |
代理公司: | 中国专利代理(香港)有限公司 72001 | 代理人: | 张凌苗;刘春元 |
地址: | 德国*** | 国省代码: | 暂无信息 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 考虑较少训练数据的基于深度机器学习的磁共振成像质量分类。为了对磁共振图像质量进行分类或训练以对磁共振图像质量进行分类,深度学习被用于学习基于模拟和测量的相似性来区分损坏图像的特征。深度学习使用没有质量注释的合成数据,从而允许大量的训练数据。然后将深度学习的特征用作输入特征,用于使用用地面实情质量注释的训练数据来训练分类器。由于使用了在没有质量注释的情况下学习的特征,可能需要较小的训练数据集来训练分类器。 | ||
搜索关键词: | 考虑 较少 训练 数据 基于 深度 机器 学习 磁共振 成像 质量 分类 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西门子医疗有限公司,未经西门子医疗有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910744073.4/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置