[发明专利]一种基于CNN与多特征融合的天气图像识别方法有效

专利信息
申请号: 201910744616.2 申请日: 2019-08-13
公开(公告)号: CN110555465B 公开(公告)日: 2022-03-11
发明(设计)人: 李英祥;李志强;任堃;钟剑丹 申请(专利权)人: 成都信息工程大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08;G06V10/764;G06V10/80
代理公司: 成都禾创知家知识产权代理有限公司 51284 代理人: 裴娟
地址: 610225 四川省成都市双*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于CNN与多特征融合的天气图像识别方法,包括以下步骤:针对输入的图片,提取六种表征不同天气现象的天气特征,并编码为特征向量;提取表征图像的高维CNN特征;将天气特征向量和CNN特征向量进行特征融合,组成整体特征向量;采用整体特征向量训练分类模型,并用训练后的分类模型对天气图像进行识别。本发明融合天气特征和CNN特征来进行训练与分类,识别准确率高。
搜索关键词: 一种 基于 cnn 特征 融合 天气 图像 识别 方法
【主权项】:
1.一种基于CNN与多特征融合的天气图像识别方法,其特征在于,包括以下步骤:/n步骤1:针对输入的图片,提取六种表征不同天气现象的天气特征,并编码为特征向量,天气特征包括天气图像中的亮度值、图像中最大和最小像素强度之间的差值,即对比度值、天气图像中雾因子、图像锐度值、图像中的白色像素值以及图像的颜色直方图;/n步骤2:提取表征图像的高维CNN特征;/n步骤3:将天气特征向量和CNN特征向量进行特征融合,组成整体特征向量;/n步骤4:采用整体特征向量训练分类模型,并用训练后的分类模型对天气图像进行识别。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都信息工程大学,未经成都信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910744616.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top