[发明专利]基于深度学习的人脸微表情识别系统有效
申请号: | 201910758794.0 | 申请日: | 2019-08-16 |
公开(公告)号: | CN110472583B | 公开(公告)日: | 2022-04-19 |
发明(设计)人: | 龚泽辉;李东;张国生;冯省城 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06V40/16 | 分类号: | G06V40/16;G06K9/62;G06N3/04;G06V10/764 |
代理公司: | 北京集佳知识产权代理有限公司 11227 | 代理人: | 刘新雷 |
地址: | 510060 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种基于深度学习的人脸微表情识别系统,包括对输入图像进行人脸微表情识别、且包括特征特征提取模块和图像识别模块的深度网络模型。特征提取模块用于提取图像识别特征,包括深度特征提取子模块和判别性特征提取子模块;深度特征提取子模块依次包括第一卷积层及多个空洞卷积模块;空洞卷积模块用于对第一卷积层输出的卷积结果进行数据处理并输出深度特征;判别性特征提取子模块用于利用基于判别性区域提议网络得到的多个判别性区域对深度特征进行裁剪,并将裁剪后的特征进行特征放大,以作为图像识别特征。图像识别模块对图像识别特征进行微表情识别并输出识别结果。本申请可高效、快速、准确地实现人脸微表情的识别。 | ||
搜索关键词: | 基于 深度 学习 人脸微 表情 识别 系统 | ||
【主权项】:
1.一种基于深度学习的人脸微表情识别系统,其特征在于,包括用于对输入图像进行人脸微表情识别的深度网络模型,所述深度网络模型包括用于提取图像识别特征的特征提取模块和用于对所述图像识别特征进行微表情识别并输出识别结果的图像识别模块;/n其中,所述特征提取模块包括深度特征提取子模块和判别性特征提取子模块;/n所述深度特征提取子模块依次包括第一卷积层及多个空洞卷积模块;空洞卷积模块用于对所述第一卷积层输出的卷积结果进行数据处理并输出深度特征;/n所述判别性特征提取子模块用于利用基于判别性区域提议网络得到的多个判别性区域对所述深度特征进行裁剪,并将裁剪后的特征进行特征放大,以作为所述图像识别特征。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910758794.0/,转载请声明来源钻瓜专利网。