[发明专利]一种基于改进蚁群算法的多配送中心车辆路径优化方法有效
申请号: | 201910763723.X | 申请日: | 2019-08-19 |
公开(公告)号: | CN110705741B | 公开(公告)日: | 2022-06-17 |
发明(设计)人: | 张贵军;武楚雄;陈驰;孙沪增;袁丰桥;李远锋 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/08;G06N3/00 |
代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于改进蚁群算法的多配送中心车辆路径优化方法,首先,针对多配送中心车辆路径优化问题,对各个客户点设计了以最近配送中心为启发式信息的惩罚函数;其次,将具有上述启发式信息的罚函数加入到各配送点的信息素更新过程中,从而提高了算法的搜索效率;然后对非劣解集合中的非劣解进行模拟退火,有效地避免了蚁群算法陷入局部最优;最后,从非劣解集合中选出最优解,从而得到最优配送路径方案。本发明在实际物流配送车辆路径优化应用中可以快速的得到可靠的最佳配送路径。 | ||
搜索关键词: | 一种 基于 改进 算法 配送 中心 车辆 路径 优化 方法 | ||
【主权项】:
1.一种基于改进蚁群算法的多配送中心车辆路径优化方法,其特征在于:所述车辆路径优化方法包括以下步骤:/n1)定义算法所需的目标函数:/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910763723.X/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理