[发明专利]一种基于大数据的高价低接用户识别方法在审
申请号: | 201910764680.7 | 申请日: | 2019-08-19 |
公开(公告)号: | CN110675020A | 公开(公告)日: | 2020-01-10 |
发明(设计)人: | 段志田;陈莹;邹禹平;贾嘉;董兵;高伟;臧依璨;高嘉伟 | 申请(专利权)人: | 国网天津市电力公司;国家电网有限公司 |
主分类号: | G06Q10/06 | 分类号: | G06Q10/06;G06Q30/02;G06Q50/06;G06K9/62;G06N3/08 |
代理公司: | 12214 天津创智天诚知识产权代理事务所(普通合伙) | 代理人: | 陈昌娟 |
地址: | 300010*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于大数据的高价低接用户识别方法,本方法基于业务规章要求、重点工作开展情况、内外部检查发现的问题,梳理业务特征项,形成模型的基础构建;基于提取的模型特征变量,实现用户行业特征与用电特征不匹配、电价执行与政策不符、档案与电费计算的执行情况不一致等高价低接特征分析;基于神经网络分位数回归模型,建立三层感知器神经网络,并采用交叉验证法、AIC准则以及BIC准则等实现对电价执行标准分类。而且,本发明通过大数据有监督学习模型,实现机器学习,找出高价低接判断对象的表象特征与高价低接判断问题的潜在关联模式;通过不断优化监控指标及规则,实现问题对象的全面挖掘,提高疑似问题对象的准确率。 | ||
搜索关键词: | 问题对象 大数据 电价 感知器神经网络 交叉验证法 标准分类 表象特征 电费计算 工作开展 关联模式 规章要求 回归模型 基础构建 机器学习 模型特征 神经网络 特征分析 行业特征 业务特征 用户识别 优化监控 不一致 准确率 三层 匹配 梳理 档案 挖掘 检查 发现 监督 学习 政策 | ||
【主权项】:
1.一种基于大数据的高价低接用户识别方法,其特征在于,按照下列步骤进行:/n步骤一、模型特征变量提取/n基于业务规章要求、重点工作开展情况、内外部检查发现的问题,梳理业务特征项,形成模型的基础构建;/n步骤二、高价低接特征分析/n高价低接特征包括:1)用户行业特征与用电特征不匹配;2)电价执行与政策不符;3)档案与电费计算的执行情况不一致;/n步骤三、模型算法设计/n(1)对用电采集数据进行抽取与存储,通过采集数据治理实现数据预处理;/n(2)采用深度学习框架TensorFlow搭建大数据建模,利用GPU设备加速训练;/n(3)采用K折交叉验证对模型效果进行验证;/n(4)模型部署后通过离线分析和线上分析同时进行模型评估;/n(5)用电历史核查记录中各种高价低接等违约用电的标签y=1,其它用户作为负样本y=0,针对公变低压用户和专变用户分别建立高价低接分析模型,对比并选择梯度上升决策树、LSTM神经网络时序模型、SVM模型,通过模型训练,建立X与y的关联;LSTM模型结构如下所述:每一个时刻,神经网络模型的输入包含当前时刻的多维特征X,通过各隐藏层的变换,得到当前时刻t的n个状态节点St=<S1,S2,S3,…,Sn>,在此DNN网络基础上,结合时序长短期记忆模型,时刻t的输出为当前时刻状态St和前一时刻状态St-1的函数Ot=f(St+W*St-1),LSTM能够同时建模客户长期和短期数据中依赖关系,并随着时间发展迭代训练、预测,模型最终输出违约用电的概率Pi=1/(1+e-Ot);/n(6)违约用电识别模型根据人工核实结果,反馈到模型的训练过程中,形成数据优化闭环,持续优化模型效果;/n步骤四、机器学习/n长期积累发现的问题案例数据,定期将核查确定的结果作为经验信息,输入规则优化模型,通过大数据监督学习模型,实现机器学习,找出高价低接判断对象的表象特征与高价低接判断问题的潜在关联模式,不断优化监控指标及规则,提升问题对象挖掘的全面性,提高疑似问题对象的准确率;/n步骤五、高价低接用户识别/n基于数据模型实现对高价低接用户的识别,根据分析出的结果结合用电检查等现场核查工作完成现场甄别,助力相关的异常问题处理。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网天津市电力公司;国家电网有限公司,未经国网天津市电力公司;国家电网有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910764680.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理