[发明专利]一种基于用户正负偏好学习的兴趣点推荐方法有效
申请号: | 201910777238.8 | 申请日: | 2019-08-22 |
公开(公告)号: | CN110555112B | 公开(公告)日: | 2022-07-15 |
发明(设计)人: | 宾辰忠;陈炜;古天龙;常亮;陈红亮;朱桂明 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06F16/36 | 分类号: | G06F16/36;G06F16/9535;G06F16/9537;G06Q10/06;G06Q50/14;G06N3/04 |
代理公司: | 北京中济纬天专利代理有限公司 11429 | 代理人: | 石燕妮 |
地址: | 541004 广西*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于用户正负偏好学习的兴趣点推荐方法,使用神经网络学习用户和景点交互的深层次特征,同时训练出两个神经网络模型,正偏好神经模型和负偏好神经模型;正偏好神经网络模型产生用户喜欢的景点的列表,然后通过负偏好神经网络模型优化并得到最终推荐列表,为用户提供更精确的景点推荐;以解决传统的兴趣点推荐精度不高和推荐结果个性化程度低等问题。 | ||
搜索关键词: | 一种 基于 用户 正负 偏好 学习 兴趣 推荐 方法 | ||
【主权项】:
1.一种基于用户正负偏好学习的兴趣点推荐方法,其特征在于,包括:/n采集用户对已访问的兴趣点的历史评价数值和已访问的兴趣点的相关属性数据,对采集到的数据进行预处理,对预处理后的数据中的用户、兴趣点和兴趣点属性进行统一编号;/n根据用户对每个已访问的兴趣点的历史评价数值,将该用户已访问的兴趣点分别划分为正反馈兴趣点列表和负反馈兴趣点列表;/n利用兴趣点、属性类型和具体属性值信息,构建兴趣点相关的三元组集合,并以三元组为基础单元建立完整兴趣点知识图谱;并将知识图谱中每个兴趣点、属性类型和兴趣点属性值学习表示为唯一对应的特征向量,分别构建兴趣点特征向量矩阵、属性类型特征向量矩阵和兴趣点属性值特征向量矩阵;/n使用用户的正、负反馈兴趣点列表和利用所述正、负反馈兴趣点列表中对应兴趣点的兴趣点特征向量矩阵、属性类型特征向量矩阵和兴趣点属性值特征向量矩阵,构建基于注意力机制的用户偏好记忆模块,所述用户偏好记忆模块为用户构建其对应的偏好特征向量矩阵,所述偏好特征向量矩阵包括正偏好特征向量矩阵和负偏好特征向量矩阵;/n使用用户的正反馈兴趣点集合,基于监督式学习方式训练该用户的正偏好神经网络模型;使用用户的负反馈兴趣点集合,基于监督式学习方式训练该用户的负偏好神经网络模型;/n使用训练好的该用户的正偏好神经网络模型预测该用户未访问过兴趣点的访问概率并将其排序,获得用户正反馈的前K个兴趣点;然后使用训练好的该用户负偏好神经网络模型去预测这K个兴趣点的概率,将排名前K/2的兴趣点从这K个兴趣点中删除,将剩下的K/2的兴趣点作为最终给该用户推荐的兴趣点。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910777238.8/,转载请声明来源钻瓜专利网。