[发明专利]一种采用概率图梯度损失函数的图像语义分割方法在审

专利信息
申请号: 201910779851.3 申请日: 2019-08-22
公开(公告)号: CN110660061A 公开(公告)日: 2020-01-07
发明(设计)人: 王吴凡;朱纪洪;杨佳利;匡敏驰;史恒;闫星辉 申请(专利权)人: 清华大学
主分类号: G06T7/10 分类号: G06T7/10
代理公司: 11250 北京三聚阳光知识产权代理有限公司 代理人: 李郁
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种采用概率图梯度损失函数的图像语义分割方法,其特征在于含有:图像语义分割数据集,卷积网络,归一化指数函数,概率图损失以及概率图梯度损失。所述卷积网络用于从所述图像语义分割数据集中提取特征,这些特征经过所述归一化指数函数处理形成预测概率图。用于训练网络模型的损失函数由所述概率图损失与所述概率图梯度损失两部分构成。所述概率图损失使预测概率图中单个像素的概率值尽可能接近真实概率值,所述概率图梯度损失使预测概率图梯度尽可能接近真实概率图梯度。本发明的一种采用概率图梯度损失函数的图像语义分割方法能够有效学习语义分割图的局部细节特征,适用于推广应用。
搜索关键词: 概率图 图像语义 损失函数 归一化指数 分割数据 真实概率 卷积 预测 训练网络模型 单个像素 函数处理 局部细节 提取特征 有效学习 语义分割 分割 网络 概率
【主权项】:
1.一种采用概率图梯度损失函数的图像语义分割方法,其特征在于包含:图像语义分割数据集,卷积网络,归一化指数函数,概率图损失以及概率图梯度损失。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910779851.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top